Combining Imprecise Probability Masses with Maximal Coherent Subsets: Application to Ensemble Classification - Archive ouverte HAL
Communication Dans Un Congrès Année : 2012

Combining Imprecise Probability Masses with Maximal Coherent Subsets: Application to Ensemble Classification

Résumé

When working with sets of probabilities, basic information fusion operators quickly reach their limits: intersection becomes empty, while union results in a poorly informative model. An attractive means to overcome these limitations is to use maximal coherent subsets (MCS). However, identifying the maximal coherent subsets is generally NP-hard. Previous proposals advocating the use of MCS to merge probability sets have not provided efficient ways to perform this task. In this paper, we propose an efficient approach to do such a merging between imprecise probability masses, a popular model of probability sets, and test it on an ensemble classification problem.
Fichier principal
Vignette du fichier
MCSprobInt.pdf (245.01 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00745592 , version 1 (25-10-2012)

Identifiants

Citer

Sébastien Destercke, Violaine Antoine. Combining Imprecise Probability Masses with Maximal Coherent Subsets: Application to Ensemble Classification. Soft Methods in Probability and Statistics, Oct 2012, Germany. pp.27-35, ⟨10.1007/978-3-642-33042-1⟩. ⟨hal-00745592⟩
101 Consultations
272 Téléchargements

Altmetric

Partager

More