Performance of the maximum likelihood estimators for the parameters of multivariate generalized Gaussian distributions - Archive ouverte HAL
Communication Dans Un Congrès Année : 2012

Performance of the maximum likelihood estimators for the parameters of multivariate generalized Gaussian distributions

Résumé

This paper studies the performance of the maximum likelihood estimators (MLE) for the parameters of multivariate generalized Gaussian distributions. When the shape parameter belongs to ]0,1[, we have proved that the scatter matrix MLE exists and is unique up to a scalar factor. After providing some elements about this proof, an estimation algorithm based on a Newton-Raphson recursion is investigated. Some experiments illustrate the convergence speed of this algorithm. The bias and consistency of the scatter matrix estimator are then studied for different values of the shape parameter. The performance of the shape parameter estimator is finally addressed by comparing its variance to the Cramér-Rao bound.
Fichier principal
Vignette du fichier
Bombrun12_ICASSP.pdf (452.79 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00744600 , version 1 (23-10-2012)

Identifiants

Citer

Lionel Bombrun, Frédéric Pascal, Jean-Yves Tourneret, Yannick Berthoumieu. Performance of the maximum likelihood estimators for the parameters of multivariate generalized Gaussian distributions. IEEE International Conference on Acoustics, Speech, and Signal Processing, Mar 2012, Kyoto, Japan. pp.3525 - 3528, ⟨10.1109/ICASSP.2012.6288677⟩. ⟨hal-00744600⟩
335 Consultations
870 Téléchargements

Altmetric

Partager

More