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ABSTRACT

This paper studies the performance of the maximum likelihood esti-
mators (MLE) for the parameters of multivariate generalized Gaus-
sian distributions. When the shape parameter belongs to ]0, 1[, we
have proved that the scatter matrix MLE exists and is unique up to
a scalar factor. After providing some elements about this proof, an
estimation algorithm based on a Newton-Raphson recursion is inves-
tigated. Some experiments illustrate the convergence speed of this
algorithm. The bias and consistency of the scatter matrix estimator
are then studied for different values of the shape parameter. The per-
formance of the shape parameter estimator is finally addressed by
comparing its variance to the Cramér-Rao bound.

Index Terms— Multivariate generalized Gaussian distribution,
Newton-Raphson recursion, M-estimators.

1. INTRODUCTION

In various signal and image processing applications, the univariate
generalized Gaussian (UGG) distribution has been introduced due
to its more peaky and heavy-tailed shape compared to the univari-
ate Gaussian distribution [1]. In order to capture inter-band depen-
dencies in a wide-sense (multiscale, multichannel, spatial dependen-
cies), different multivariate distributions which generalize the UGG
distribution have been proposed in the literature. A copula-based
model with UGG distributed marginals has notably been proposed
in [2] [3] to model the multichannel dependencies of wavelet co-
efficients. An extension of the UGG distribution to the multivari-
ate case, referred to as anisotropic multivariate generalized Gaussian
distribution, has also been proposed in [4]. In order to satisfy ellip-
tically contoured distribution properties [5] [6], a natural extension
of the UGG distribution is to consider the multivariate generalized
Gaussian distribution (MGGD) introduced in [7], also known as the
multivariate power exponential distribution [8]. The MGGD is com-
pletely characterized by its scatter matrix Σ and its shape parameter
β. This model has recently shown good properties for several image
processing applications such as multispectral image indexing [9],
image denoising [10] and texture image retrieval [11] [12]. In these
applications, the unknown parameters Σ and β have to be estimated
from the observed images. These parameters can be estimated by
minimizing a χ2 distance as in [9], or by minimizing an L2-norm
as in [10]. Estimators based on the method of moments and on the
maximum likelihood method have also been proposed in [11] [12].
However, the performance of these estimators has not been inves-
tigated, which is the main objective of this work. More precisely,
the main contribution of the paper is to show that for β ∈]0, 1[

(which corresponds to most of the real-life problems), the maximum
likelihood estimator (MLE) of the MGGD scatter matrix exists and
is unique up to a scalar factor. An iterative algorithm based on a
Newton-Raphson recursion is then proposed to compute the MLE of
the normalized MGGD scatter matrix. Some experiments are then
conducted to evaluate the convergence speed of the algorithm as well
as the bias and the consistency of the scatter matrix estimator. Some
results regarding the estimation of the MGGD shape parameter are
finally presented. The paper is structured as follows. Section 2 intro-
duces the MGGD and the MLEs of its parameters. Section 3 derives
properties of the scatter matrix MLE. Some simulations results are
presented in Section 4 to evaluate the performance of the MLEs of
the MGGD parameters. Conclusions and future works are finally
reported in Section 5.

2. THE MULTIVARIATE GENERALIZED GAUSSIAN
DISTRIBUTION (MGGD)

2.1. Definition and stochastic representation

The probability density function of an MGGD is [7]
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for any v ∈ R+ and M = Σ/m is a normalized matrix such that
tr (M) = p (where tr (M) is the trace of the matrix M and p is
the dimension of the vector x). Note that β = 0.5 corresponds to
the multivariate Laplace distribution, while β = 1 corresponds to
the multivariate Gaussian distribution. When β tends toward infin-
ity, the MGGD is also known to reduce to the multivariate uniform
distribution.
Let x be a random vector distributed according to an MGGD of scat-
ter matrix Σ = mM and shape parameter β. Gómez et al. have
shown in [8] that x admits the following stochastic representation

x
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where d
= means equality in distribution, u is a random vector uni-

formly distributed on the unit sphere Rp, and τ is a scalar positive



random variable such that
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where G(a, b) is the univariate Gamma distribution with parameters
a and b (see [13] for definition).

2.2. MGGD parameter estimation

Let (x1, . . . ,xN ) be N vectors independent and identically dis-
tributed according to an MGGD. Since an MGGD is a particular
real elliptical distribution, the MLE of the matrix M satisfies the
following fixed point equation [14]
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where g(v) =
∂h(v)

∂v
. By replacing h (·) by its definition (2), the

following result can be obtained
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Note that the first term outside the summation is a scalar that can
be encompassed in the constraint. Thus (6) reduces to the following
M-estimator fixed point equation
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Note that (7) reduces to the sample covariance matrix (SCM) estima-
tor when β = 1 and to the fixed point covariance matrix estimator
derived in [14] [15] for β = 0.
Moreover, by differentiating the joint distribution of (x1, . . . ,xN )
with respect to m and β, the following results can be obtained
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where ui = xTi M−1xi, and Ψ(·) is the digamma function. The
MLEs of parameters M, β andm are the solutions of (6), (7) and (8)
that will be denoted M̂, β̂ and m̂. Equations (7) and (8) show that M
and β can be estimated independently from the scale parameter m.
To solve (8) for a known matrix M, we consider a Newton-Raphson
procedure defined by

β̂n+1 = β̂n −
f(β̂n)

f ′(β̂n)
(10)

where β̂n is the estimator of β at step n, and the function f(β) is
defined in (8). In practice, when the parameters M and β are un-
known, we propose the following algorithm to estimate the MGGD
parameters:

1: Initialisation of β and M.
2: for k = 1 : N iter max do
3: Estimation of M using one iteration of (7) and normalization.
4: Estimation of β by a Newton-Raphson iteration combin-

ing (8) and (10).
5: end for
6: Estimation of m using (9).

Note that we have observed that the algorithm convergence is sig-
nificantly faster when the normalization constraint tr(M) = p is
imposed at each iteration.

3. PROPERTIES OF THE M-ESTIMATOR

MGGDs belong to the general class of elliptical distributions (ED)
denotedEp. Maronna derived in [16] very useful results for estimat-
ing the parameters of EDs. Let (x1, . . . ,xN ) be a N -sample (N in-
dependent and identically distributed vectors) of p-dimensional real
vectors, with zero mean and distributed according to an ED, i.e.,
xi ∼ Ep(0,Λ) for i = 1, . . . , N . The M-estimator of Λ is defined
as the solution of the following equation
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where u(·) is a function satisfying a set of general assumptions pro-
vided in [16] and recalled below

(i) u is non-negative, non increasing, and continuous in [0,∞).

(ii) If K = sup
s≥0

ψ(s) with p < K <∞ and ψ(s) = s u(s), ψ is

non decreasing and strictly increasing in the interval where
ψ < K.

(iii) Let PN (·) the empirical distribution of x1, . . . ,xN , there
exists a > 0 such that for every hyperplane H such that
dim(H) ≤ p− 1 we have

PN (H) ≤ 1− p

K
− a. (12)

Theorem 1. Under the assumptions (i), (ii) and (iii), a solution of
(11) exists and is unique. Moreover, this solution is consistent up
to a scale factor and a simple iterative procedure can be used to
determine VN .

Let us now consider the following equation
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which corresponds to (7) without the normalization part. It can be
noticed that the function u(s) = sβ−1 with β ∈]0, 1[ does not verify
conditions (i) (absence of continuity in 0) and (ii) (ψ(s) = sβ is not
bounded on R+). Consequently, Theorem 1 cannot be applied to
(13). To fill this gap, we have derived the following theorem

Theorem 2. Let (x1, . . . ,xN ) be N independent realizations of a
p-dimensional random vector x distributed according to an MGGD
of parameters m, β and M. For β ∈]0, 1[,

1. the solution of the fixed point equation (13) exists and is
unique up to a scalar factor,

2. Equation (7) admits a unique solution due to the normaliza-
tion,



3. the recursive algorithms associated with equations (7) and
(13) converge whatever the initialization.

Proof. Due to the lack of space, we will give an insight of the
proof outline. Complete arguments can be found in [17]. Let us
rewrite (13) as M = f(M) and let us consider a particular primitive
F of f . To prove (1), we show that F admits a supremum on an
open-half line of the set of positive-definite matrices and equiv-
alently, that f admits αMFP as the unique solution of norm α,
where MFP is the unit norm solution of (13). (2) is a straightfor-
ward corollary of (1). Then, to prove (3), we consider the discrete
dynamical system Mk+1 = f(Mk) and we show that for every
initialization M0, the resulting trajectories (i.e., sequences of matri-
ces Mk) converge to the same point up to a scale factor. Imposing
tr(Mk) = p at each iteration concludes the proof.

It is important to note that the condition β ∈]0, 1[ corresponds to
most applications including the modeling of spatial or color depen-
dencies in wavelet coefficients for texture images [12].

4. SIMULATIONS

This section presents some simulation results to evaluate the perfor-
mance of the MLEs for the parameters of MGGDs. The data vectors
(x1, . . . ,xN ) have been generated asN independent and identically
distributed random vectors distributed according to an MGGD by
using the stochastic representation (3). All simulations have been
conducted using the matrix M = (Mi,j) with

Mi,j = ρ|i−j|. (14)

In all experiments, the unknown parameters of the MGGD (M, β
and m) have been jointly estimated by using the algorithm provided
in section 2.2.

4.1. MLE of the scatter matrix

Fig. 1 shows some convergence results associated with the scatter
matrix MLE M̂ when the length of each vector xi is p = 3. In this
simulation, we have considered β = 0.2 and ρ = 0.8. Convergence
results are analyzed by evaluating the criterion C(k) defined as

C(k) =
||M̂k+1 − M̂k||
||M̂k||

(15)

where || · || is the Frobenius norm and M̂k is the MLE of M at step
k. Note that more appropriate matrix norms could also be used to
account for the geometrical structure of the set of positive definite
matrices (see [11] [18] for more details).
Fig. 1.(a) shows examples of criteria C(k) obtained for various ini-
tial matrices M0 (“moments” stands for M0 equal to the estimator
of moments [11], “identity” stands for M0 = Ip and “true” corre-
sponds to M0 = M). After about 20 iterations, all curves converge
to the same values. Hence, the convergence speed of the proposed
algorithm seems to be independent of its initialization. Fig. 1.(b)
shows the evolution of criteria C(k) for various numbers N of sec-
ondary data. It can be observed that the convergence speed increases
with N (as expected).

(a)

(b)

Fig. 1. Variations ofC(k) for p = 3, β = 0.2 and ρ = 0.8. (a)C(k)
versus number of iterations for different initializations (N = 200).
(b) C(k) versus number of iterations for various values of N .

4.2. Bias and consistency analysis

Fig. 2.(a) shows the estimate bias of M̂, for different values of β
(β ∈ {0.2, 0.5, 0.8}), defined as ||M−M|| where the matrix M is
defined as the empirical mean of the estimated matrices

M =
1

I

I∑
i=1

M̂(i). (16)

All experiments presented in this paper have been obtained with I =
1000. Note that the bias criterion (16) was used in [19] for assessing
the performance of matrix estimators. As observed in Fig. 2.(a), the
bias converges very fast to a small value which is independent of β
Fig. 2.(b) presents some consistency results for the proposed estima-
tor. Here, a plot of ||M̂−M|| is shown as a function of the number
of samples N for different values of β. It can be noticed that this
criterion tends to 0 when N approaches∞ independently of β.

4.3. Parameter β

The Fisher information matrix has been recently derived for the pa-
rameters of MGGDs [11]. It has been shown that this matrix only
depends on the numberN of secondary data and the shape parameter
β. The Cramér-Rao lower bounds (CRLBs) for the MGGD parame-
ters can then be obtained by inverting the Fisher information matrix.



(a)

(b)

Fig. 2. (a) Estimated bias for different values of β, (b) estimated
consistency for different values of β.

These CRLBS provide a reference (in terms of variance or mean
square error) for any unbiased estimator of the MGGD parameters.
A comparison between the variances of estimators resulting from the
method of moments and the ML principle as well as the correspond-
ings CRLBs are depicted in Fig. 3 (versus the number of samples
and the value of β). Fig. 3.(a) was obtained for β = 0.2, ρ = 0.8
and p = 3, while Fig. 3.(b) corresponds to N = 10 000, ρ = 0.8
and p = 3. The ML method yields lower estimation variances com-
pared to the moment-based approach, as expected. Moreover, the
Cramér-Rao lower bound of β is very close to the variance of β̂ in
all cases illustrating the MLE efficiency.

5. CONCLUSION

This paper has addressed the problem of estimating the parameters
of multivariate generalized Gaussian distributions using the maxi-
mum likelihood method. For any shape parameter β ∈]0, 1[, we
have proved that the maximum likelihood estimator of the scatter
matrix exists and is unique up to a scalar factor. Simulation results
have shown that this estimator is unbiased and consistent. The esti-
mation of the shape parameter β was also investigated. The variance
of its maximum likelihood estimator is very close to the correspond-
ing Cramér-Rao bound illustrating its statistical efficiency. Further
works include the use of multivariate generalized Gaussian distri-
butions for remote sensing applications such as change detection or
classification.

(a) (b)

Fig. 3. Estimation performance for parameter β. (a) Variance of β̂
versus number of samples N for β = 0.2, ρ = 0.8 and p = 3, (b)
Variance of β̂ versus β for N = 10 000, ρ = 0.8 and p = 3.
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