An Architecture to Efficiently Learn Co-Similarities from Multi-View Datasets - Archive ouverte HAL
Communication Dans Un Congrès Année : 2012

An Architecture to Efficiently Learn Co-Similarities from Multi-View Datasets

Résumé

In this paper, we introduce the MVSim architecture which is able to cluster multi-view datasets (i.e. datasets containing several objects linked together by di erent relations), by using several instances of a co-similarity algorithm.We show that this framework provides better results than existing approaches, while reducing both time and space complexities thanks to an e cient parallelization of the computations. This approach allows to split large datasets into a set of smaller ones.
Fichier principal
Vignette du fichier
Bisson-Grimal-ICONIP2012.pdf (596.99 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00740749 , version 1 (10-10-2012)

Identifiants

  • HAL Id : hal-00740749 , version 1

Citer

Gilles Bisson, Clément Grimal. An Architecture to Efficiently Learn Co-Similarities from Multi-View Datasets. International Conference on Neural Information Processing (ICONIP), Nov 2012, Doha, Qatar. pp.184-193. ⟨hal-00740749⟩
132 Consultations
324 Téléchargements

Partager

More