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Abstract. In this paper, we introduce the MVSim architecture which
is able to cluster multi-view datasets (i.e. datasets containing several
objects linked together by different relations), by using several instances
of a co-similarity algorithm. We show that this framework provides better
results than existing approaches, while reducing both time and space
complexities thanks to an efficient parallelization of the computations.
This approach allows to split large datasets into a set of smaller ones.
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1 Introduction

Co-clustering methods allow to efficiently capture high-order similarities between
objects described by rows and columns of a data matrix. However, in complex
domains as social network analysis, many objects and relations exist, such as:
users/users, users/documents, documents/tags, ... all of them providing a dif-
ferent view on the dataset that can be expressed as a collection of matrices. By
separately processing these matrices, we get a huge loss of information.

Therefore, multi-view clustering task is an interesting challenge wrt classical
clustering. Since the seminal work of [2], introducing semi-supervised learning,
many extensions to the clustering methods have been proposed to deal with such
multi-view data. For example, [5] and [1] respectively describe an extension of
k-means (MVKM) and of EM algorithms; the framework of spectral clustering
has also been investigated, for instance in [7] the similarities computed in one
view are used to constrain the similarities computed in the other views through
the eigenvectors of the Laplacian matrix. It is worth noting that multi-view
clustering can also be tackled by consensus clustering methods which aim at
combining the results of multiple clusterings [8]. Similarly, some works aim at
combining multiple similarity matrices to perform a given learning task [9], [3],
the idea being to build clusters from multiple similarity matrices computed along
different views. The present work is an extension of an existing algorithm, named
χ-Sim [6], which obtained good results on the co-clustering task.

The rest of the paper is structured as follows. In Sect. 2, after introducing
some notations, we provide a rapid insight about the χ-Sim method and then,
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we present and analyze the MVSim architecture allowing to adapt the previous
algorithm to the multi-view context. In Sect. 3, we explain how it is possible to
use this architecture to efficiently compute co-similarities on large databases by
splitting a data matrix into smaller ones. Finally, in both sections (2 and 3), we
provide some experimental results in order to evaluate our proposals.

2 Dealing with multi-view databases

2.1 Notations

Here, we use the classical notations: matrices (in capital letters) and vectors (in
small letters) are in bold; variables are in italic.

Type of objects: let N be the number of types of objects in the dataset.
∀i ∈ 1..N , Ti is the type of object i (i.e. users, documents, words, etc.). For the
sake of simplicity, we assume that each Ti has the same set of ni instances across
the collection of matrices.

Relation matrices: let M be the number of matrices in the dataset. Then Ri,j

is the relation matrix describing connections between instances of Ti and Tj , of
size ni × nj . Each element (Rij)ab expresses the link ‘intensity’ between the ath

instance of Ti and the bth instance of Tj . For example, in a [documents/terms]
matrix it can be expressed as the frequency of the bth term in the ath document.

Similarity matrices: we can thus consider N similarity matrices S1 . . .SN .
Then Si (of size ni×ni) is the square and symmetrical matrix that contains the
similarities between all the pairs of instances of Ti. The values of the similarity
measures must be in [0, 1], the value 1 expressing a full similarity.

2.2 Algorithm χ-Sim

The basic component of our approach is the χ-Sim co-similarity measure [6].
The main idea behind χ-Sim is to make use of the duality between object (e.g.
documents and words): each one being a descriptor of the other. This is achieved
by simultaneously calculating similarities between documents on the basis of the
similarities between their words, and similarities between words on the basis of
the similarities between the documents in which they appear. Once the similarity
matrices have been generated they can be used by any clustering algorithm (for
example k-means) to organize documents and/or words into clusters. However,
due to the interleaved way these similarities have been computed, the resulting
clusters are similar to those obtained with a genuine co-clustering algorithm.

We selected this approach for two reasons. First, it simultaneously builds
similarity matrices Si and Sj , rather than set of clusters, between rows and
columns of a data matrix Ri,j . This is useful in the multi-view context to combine
easily the set of similarity matrices computed from the different matrices of
the dataset. Second, in this algorithm, the similarity matrices of each type of
objects Ti can be initialized, allowing us to inject some a priori knowledge about
the data. In this way, it becomes possible to iteratively transfer the similarities
computed from one view to the others.
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More formally, the inputs of χ-Sim are: a data matrix Ri,j describing Ti
and Tj relationship, an initialization of the two matrices Si and Sj (i.e. set by
default to the identity matrix I), and the outputs are the two modified similarity

matrices, denoted S
(i,j)
i and S

(i,j)
j computed by χ-Sim to capture high order co-

occurrences between rows and columns of Ri,j .

2.3 The MVSim Architecture

In this paper, we want to compute simultaneously the co-similarity matrix Si

for each of N different kinds of objects Ti described by the M relation matrices
Ri,j of the dataset. The ground idea is to create a learning network isomorphic
to these dataset structure (see Fig. 1 and Fig. 2 to have an example of network).
At first, an instance of χ-Sim, denoted χ-Simi,j , is associated to each matrix

Ri,j . It computes the similarity matrices S
(i,j)
i and S

(i,j)
j . However, for a given

type of object Ti, as each instance χ-Simi,. produces its own similarity matrix,

we thus get a set of output similarity matrices {S(i,1)
i ,S

(i,2)
i , ...} the cardinal of

which being equal to the number of relation matrices related to Ti. Therefore, we
need to introduce an aggregation function, denoted Σi, to compute a consensus

similarity matrix merging all of the {S(i,1)
i ,S

(i,2)
i , ...} with the current matrix Si.

In turn, these resulting consensus matrices are connected to the inputs of all the
χ-Simi,. instances, thus creating feedback loops allowing the system to spread
the knowledge provided by each Ri,j within the network.

S
(i,j)
j

Ri,j

Σi

Σj

S
(i,j)
i

S
(i,.)
i

S
(.,j)
jχ-Sim.,j

χ-Simi,. Si

Sj

χ-Simi,j

Fig. 1. Generic component of the architecture to deal with one Ri,j matrix.

The system runs iteratively: χ-Simi,j instances are fired in parallel (Alg. 1),
then the similarity matrices Si are updated through Σi aggregation functions.
Without detailing (see [6]), the meaning of an iteration t is the same as in χ-
Sim: it takes into account the order − t paths of the bipartite graph expressed
by each matrix Ri,j . Of course, functions Σi must be defined in order to ensure
that Si are converging along iterations and to take into account that confidence
of the information provided by each iteration decrease according to length of the
paths. More formally, let λ ∈ [0, 1[ be a damping parameter, let F a merging
function (here achieved by computing the element-wise average of all matrices)
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combining the matrices {S(i,1)
i ,S

(i,2)
i , ...} and let S

[t−1]
i be the previously com-

puted similarity matrix of instances of Ti. The formula used is as follows:

Σi = (1− λt)S[t−1]
i + λt F

(
S
(i,1)
i ,S

(i,2)
i , . . .

)
(1)

As the F function is bounded and the damping factor λt is exponentially de-
creasing with t, this formula ensures the convergence of the sequence composed
of the successive similarity matrices computed by the Σi functions. Experimen-
tally, with λ = 0.5 convergence is obtained after about 6 iterations.

Algorithm 1 The MVSim algorithm

Require: A collection of relation matrices {Ri,j}
Let {Si} the similarity matrices with Si ← I
for t = 1→ Convergence do

Execute every χ-Simi,j

Update every Si with Σi using Eq. (1).
end for

The complexity of MVSim architecture is obviously related to the one of the
χ-Sim algorithm. Let us consider a matrix Ri,j of size n by m with m > n, as
this algorithm consists in multiplying three matrices (see [6]), the complexity
to compute a similarity matrix of size m2 (columns) equals O(nm2). In the
MVSim framework, as each instance of χ-Simi,j can run on an independent
core, the method can easily be parallelized, thus keeping the global complexity
unchanged (considering the number of iterations as a constant factor). Finally,
the complexity of the Σi functions can be ignored since it equals O(m2). As we
will see in Sect. 3, MVSim can also be useful to turn a large problem into a
collection of simpler ones, thus reducing further the overall complexity.

2.4 Experiments

We selected datasets with labeled clusters and then we evaluated the correlation
between the clusters learned with MVSim and those already known using the
classical Micro-Averaged Precision (MAP) [4]. We used eight datasets1. The first
dataset is extracted from the IMDb website. It contains three types of objects:
movies, actors and keywords and two relation matrices: the [movies/actors] ma-
trix and the [movies/keywords] matrix. The six next databases concern “Web
data” and are all constructed following the same structure with two types of
objects (documents and words) and four relation matrices. More precisely, we
used the Cora and CiteSeer dataset [5] and four datasets describing the pages
of universities (WebKB), classified in five classes. Finally, we built a multi-view
dataset from the Reuters RCV1/RCV2 collection following the methodology
of [7]: we used the [documents/words] matrices in english and their traductions
in french, german, italian and spanish, to get a total of 5 views.

1 Dataset repository and details: http://membres-lig.imag.fr/grimal/data.html

http://membres-lig.imag.fr/grimal/data.html
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With these eight benchmarks, we compared MVSim with: Cosine, LSA,
CTK [10] and χ-Sim [6] that are five classical similarity or co-similarity mea-
sures; ITCC [4] a well-known co-clustering system; MVSC [7] a multi-view
algorithm. Finally, we ran two basic versions of MVSim without iteration (no
feedback loop nor damping factor), to verify that our results are significantly
better than those obtain by simply averaging the similarity matrices computed
from each Ri,j ; we tested two similarity measures : cosine (Merge Cosine) and
χ-Sim (Merge χ-Sim). For the similarity based systems: Cosine, LSA, SNOS,
CTK and χ-Sim, the final clusters were generated by an Agglomerative Hierar-
chical Clustering method using Ward’s linkage. Then, we cut the resulting tree
at the level corresponding to the number of expected classes.

Table 1. Results of the experiments expressed with the Micro-averaged precision.

Datasets Best monoview
Merge
Cosine

Merge
χ-Sim

MVSC MVSim

IMDb 0,332 CTK 0,191 0,233 0,296 0,347

Cora 0,502 χ-Sim 0,394 0,393 0,528 0,697

CiteSeer 0,608 χ-Sim 0,405 0,560 0,578 0,635

Cornell 0,631 χ-Sim 0,364 0,569 0,519 0,708

Texas 0,722 χ-Sim 0,497 0,642 0,591 0,647

Washington 0,652 LSA 0,470 0,635 0,605 0,709

Wisconsin 0,675 χ-Sim 0,600 0,536 0,551 0,706

ReutersEN 0,601 LSA 0,35 0,420 0,510 0,509

Although we tested single-view algorithms on all the views of the eight
datasets, we just report in Table 1 the result obtained by the best method
along with its name. MVSim obtains the best results in all the datasets but
two. With Reuters, MVSC is slightly better but LSA is a clear winner with a
single view (english version) and with Texas (best: χ-Sim and LSA) MVSim is
ranked at the third position. We are still investing the reasons why our algo-
rithm fails on this last dataset since it is very close to Cornell, Washington and
Wisconsin and the two data matrices content and in/out do not seem to contain
contradictory information. It is worth noticing that none of the two consensus
approaches (Merge Cosine and Merge χ-Sim) obtain good results, emphasizing
the fundamental role played by the feedback loop of our architecture.

3 Parallelization and splitting approaches

Until now, we considered multi-views clustering as a way to combine knowledge
coming from different sources of data. However, at the same time, the MVSim
architecture can also be used to reduce the algorithmic complexity of a problem
by splitting a data matrix R into a collection of smaller ones, each submatrix
becoming a component of our network and processed as a separate view. This can
be done either on one dimension of R (Sect. 3.1) or both dimensions (Sect. 3.2).
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3.1 One dimensional splitting

Let us consider a dataset with one [documents/words] matrix of size n by m in
which we just want to cluster the documents. If the number of words is huge with
respect to the number of documents, we can divide the problem into a collection
of h submatrices of size n by m/h (Fig. 2). Thus, by using a distributed version
of MVSim on h cores, we will gain both in time and space complexity: indeed,
the time complexity decreases from O(nm2+n2m) to O(1/h2(nm2)+1/h(n2m))
leading to an overall gain of 1/h2 when n < m. In the same way, the memory
needed to store the similarity matrices between words will decrease by a 1/h
factor (but not 1/h2 since we have now h similarity matrices to compute).

R
1000 Docs x 2000 Words

R'
1000 Docs
1000 Words

R"
1000 Docs
1000 Words

∑d

R"

χ-Sim1 χ-Sim2

∑w' ∑w"

R'

Dw' w"

Fig. 2. Example of a [documents/words] matrix R splitted vertically into two subma-
trices R′ and R” and the corresponding MVSim network. Here, the goal is to learn the
co-similarity matrix D between documents, the two other matrices W′ and W” being
only used during the learning process.

Of course, when using this splitting approach, we lost some information. In
the example of Fig. 2, we don’t compute the co-similarities between all pairs of
words but only between the words occurring in R′ or those occurring in R”;
there are no “inter-matrices” comparisons. However, our assumption is that,
thanks to the feedback loops of the MVSim network and to the presence of the
common co-similarity matrix D, we will be able to alleviate this problem.

3.2 Two dimensional splitting

Space complexity of a distance (or similarity) matrix O(N2) is a strong limit
to the number of instance that a learning algorithm can process. For instance,
a similarity matrix between one millions of instances needs terabytes of storage.
Here, we propose to use the MVSim architecture to deal with this problem.

Let us consider one [documents/Words] square matrix R of size n by n. If
we assume we have an access to a cluster of computers having h2 nodes (or
cores) the idea is to split R into h2 submatrices of size n/h and then to use
a distributed MVSim architecture to learn the similarity matrices with these
submatrices (Fig. 3). In this way, the time complexity decreases from O(n3) for
the full matrix to O(n/h)3 thus leading to an strong overall gain of 1/h3. In this
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approach, each Σi functions has to merge h partial similarity matrix (line or
column of the network), however this cost remains negligible as long as n > h2.

Concerning the space complexity, during the learning step, as we need to
compute a similarity matrix for all the submatrices, the overall memory con-
sumption is the same as with a classical approach O(n2) but it is shared on the
h2 nodes. However, the two output matrices only use O(n2/h) of memory, thus
leading to an gain of 1/h. Indeed, the learned similarity matrices correspond
to the “diagonal” of the general co-similarity matrices [documents/documents]
and [words/words]. As we evoked in section 3.1, documents (resp. words) of one
submatrix are only compared with documents of the same submatrix.

R
5x5

MVSim 
network

SD SW

Fig. 3. Assuming with have a cluster of h2 cores. We split a [documents/words] matrix
R into a collection of h2 submatrices of size n/h and we create the corresponding
MVSim network to deal with them in parallel. The output is a collection of co-similarity
matrices (colored elements) that are a subset of the two general co-similarity matrices
between documents and words: SD and SW.

Of course, this is a problem since with the learned matrices we are not able
to know the similarity between each pair of documents or each pair of words.
Fortunately, we can use the following trick in order to evaluate the missing co-
similarities. Let us consider two documents di = (R)i: and dj = (R)j: of the data
matrice R that was not in the same submatrix when we learned the co-similarity
matrices. We compute their co-similarity in the following way :

CoSim(di,dj) = di × SW × dj
T (2)

On the one hand, this value is an approximation of the value we will get by
using directly the χ-Sim method (especially if h is large), but on the other hand
this splitting approach allows to compute co-similarity values on larger datasets.

3.3 Experiments

To evaluate the divisive approaches introduced in the two previous sections, we
used the classical NG20 collection consisting of approximately 20,000 newsgroup
articles collected from 20 different Usenet groups2. Here, our goal is to cluster
the articles (documents) and to explore the behavior of MVSim when varying
the number of “splits” (i.e. of submatrices). From this collection, we selected
the 10 newsgroups3 having the largest number of documents as being our target

2 http://people.csail.mit.edu/jrennie/20Newsgroups/
3 Namely: comp.graphics, misc.forsale, rec.autos, rec.sport.baseball, rec.sport.hockey,

sci.crypt, sci.med, sci.space, soc.religion.christian, talk.politics.mideast.

http://people.csail.mit.edu/jrennie/20Newsgroups/
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clusters. Next, we randomly built 10 folds of four subsets containing a different
number of documents from 400 documents (40 per newsgroup), up to 6400 doc-
uments (320 per newsgroup) with the intermediate values 800, 1600 and 3200.
Secondly, we selected a subset of 4000 words from the whole collection by using
the k-medoids algorithm in order to get the “best” (most representative) words.

1 x 4000 2 x 2000 4 x 1000 8 x 500 16 x 250
Number of splits x words

0.35

0.40

0.45

0.50

0.55

0.60
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n

#documents
400
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1600

Fig. 4. Mean and standard deviation of the micro-averaged precision (over 10 folds)
for various number of splits using the one dimensional splitting.

To evaluate one dimensional splitting, we tested the MVSim architecture
with 1 split (full matrix) containing 4,000 words, then 2 random splits of 2,000
words, etc. until 16 random splits of 250 words. For each run, the number of
χ-Simi,j instances in the MVSim network equals the number of splits.

Fig. 4 shows the mean micro-averaged precision over 10 folds, obtained with
the tested conditions. Obviously, the quality of the clustering tends to decrease
when the number of splits increases, but if we compare, for instance, the micro-
averaged precision obtained for 8 splits of 500 words with the best value (obtained
with one matrix of 4000 words), the precision is only 2-3% lower (on average) for
these three experiments. Nevertheless, to get this result, the computation time
of the similarity matrices between words was divided by an impressive 64 factor4

(1/splits2) and the memory footprint is 8 (1/splits) times smaller. The observed
loss of performance is due to the fact that by splitting the set of features (words),
one prevent the system to compute the similarities between features across the
different splits; furthermore, the relative performance drop we observe with 16
splits is a direct consequence of the fact that the number of words in each matrix
becomes too small with respect to the number of documents.

4 Of course, this is a theoretical result, on a multicore computer the speed gain could
be smaller due to the limit of the bus bandwidth between the cores and the memory.
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To conclude, there is a clear trade-off between the quality of the clustering
and both running time and memory usage. But when computation time and
memory needs to be reduced, the MVSim architecture provides a very efficient
solution to speed-up computations with a minimal loss in clustering accuracy.

Fig. 5. Mean and standard deviation of the micro-averaged precision (over 10 folds)
for various number of splits using the two dimensional splitting.

To evaluate two dimensional splitting, we tested the MVSim architecture
with two matrices [documents/words] of size [3, 200×2, 000] and [6, 400×4, 000].
In both cases we tested several kinds of random splits: initial matrix, 2×2, 2×4,
4× 4, 8× 8 and 16× 16 splits. For each run, the number of χ-Simi,j instances in
the MVSim network equals the total number of submatrices. Fig. 5 shows the
mean micro-averaged precision over 10 folds, obtained with the different tested
conditions. Here, the quality of the clustering decreases more rapidly than in
the previous experiment when the number of splits increases. However, for the
[6, 400 × 4, 000] dataset and 2 × 2 splits, we observe that the result if slightly
better than for the [3, 200 × 2, 000] dataset, although the two experiments are
using the same amount of time, thanks to the parallelization. Nevertheless, it is
clear that our second divisive strategy needs to be improved.

4 Conclusion

In this paper, we proposed the MVSim architecture to deal with the problem
of learning co-similarities from a collection of matrices describing interrelated
types of objects. This architecture provides some interesting properties both in
terms of convergence and scalability and it allows a straightforward and efficient
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parallelization. The experiments demonstrate that this architecture outperforms
both single-view and multi-view approaches on several benchmarks.

For future works, many directions seem compelling to explore such as gen-
eralizing our architecture to work with clustering ensembles by considering, in
the network, a data-flow of clusters rather than similarities. In the two divisive
approaches more sophisticated splitting strategies will also be investigated such
as using a fast clustering method (e.g k-means) in order to create more coher-
ent submatrices. Another interesting perspective would be to adapt MVSim to
supervised learning by modifying the aggregation function.

Acknowledgments. This work is partially supported by the French ANR
project FRAGRANCES under grant 2008-CORD 00801.
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