2D-3D semantic categorization of visual objects - Archive ouverte HAL
Communication Dans Un Congrès Année : 2012

2D-3D semantic categorization of visual objects

Résumé

In the context of content-based indexing applications, the automatic classification and interpretation of visual content is a key issue that needs to be solved. This paper proposes a novel approach for semantic video object interpretation. The principle consists of exploiting the a priori information contained in categorized 3D model data sets, in order to transfer the semantic labels from such models to unknown video objects. Each 3D model is represented as a set of 2D views, described with the help of shape descriptors. A matching technique is used in order to perform an association between categorized 3D models and 2D video objects. The experimental evaluation shows the interest of our approach, which yields recognition rates of up to 92.5%.
Fichier principal
Vignette du fichier
2D-3D_semantic_categorization_of_visual_objects.pdf (451.94 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00738229 , version 1 (03-10-2014)

Identifiants

  • HAL Id : hal-00738229 , version 1

Citer

Raluca Diana Petre, Titus Zaharia. 2D-3D semantic categorization of visual objects. 20th European Signal Processing Conference (EUSIPCO 2012), Aug 2012, Romania. pp.2387. ⟨hal-00738229⟩
109 Consultations
94 Téléchargements

Partager

More