Asymptotic equivalence for nonparametric diffusion and Euler scheme experiments - Archive ouverte HAL
Article Dans Une Revue Annals of Statistics Année : 2014

Asymptotic equivalence for nonparametric diffusion and Euler scheme experiments

Résumé

The main goal of the asymptotic equivalence theory of Le Cam (1986) is to approximate general statistical models by simple ones. We develop here a global asymptotic equivalence result for nonparametric drift estimation of a discretely observed diffusion process and its Euler scheme. The asymptotic equivalences are established by constructing explicit equivalence mappings. The impact of such asymptotic equivalence results is that it justifies the use in many applications of the Euler scheme instead of the diffusion process. We especially investigate the case of diffusions with non constant diffusion coefficient. To obtain asymptotic equivalence, experiments obtained by random change of times are introduced.
Fichier principal
Vignette du fichier
Euler_equiv_03_10.pdf (215.2 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00738115 , version 1 (03-10-2012)

Identifiants

Citer

Valentine Genon-Catalot, Catherine Larédo. Asymptotic equivalence for nonparametric diffusion and Euler scheme experiments. Annals of Statistics, 2014, 42 (3), pp.1145-1165. ⟨10.1214/14-AOS1216⟩. ⟨hal-00738115⟩
672 Consultations
194 Téléchargements

Altmetric

Partager

More