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Abstract

The main goal of the asymptotic equivalence theory of Le Cam (1986) is to approx-
imate general statistical models by simple ones. We develop here a global asymptotic
equivalence result for nonparametric drift estimation of a discretely observed diffusion
process and its Euler scheme. The asymptotic equivalences are established by construct-
ing explicit equivalence mappings. The impact of such asymptotic equivalence results
is that it justifies the use in many applications of the Euler scheme instead of the diffu-
sion process. We especially investigate the case of diffusions with non constant diffusion
coefficient. To obtain asymptotic equivalence, experiments obtained by random change
of times are introduced.
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1 Introduction

Global asymptotic equivalence of statistical experiments by means of the Le Cam theory of
deficiency (Le Cam 1986, Le Cam and Yang 2000) is an important issue for nonparametric
estimation problems. The interest is to obtain asymptotic results for some experiment by
means of an equivalent simpler one. Concretely, a solution to a nonparametric problem
in a simple experiment automatically yields a corresponding solution in an asymptotically
equivalent experiment. For instance, when minimax rates of convergence in a nonparametric
estimation problem are obtained in one experiment, the same rates automatically hold
in a globally asymptotically equivalent experiment (see e.g. Nussbaum 1996, Brown and
Low 1996). The theory also allows to prove asymptotic sufficiency of the restriction of an
experiment to a smaller σ-field.

In most cases, authors are interested in the asymptotic equivalence of density estimation
or nonparametric regression and Gaussian white noise (see e.g. Nussbaum 1996, Brown and
Low 1996, Grama and Nussbaum 1998, 2002, Brown et al. 2004, Reiss 2008). Our concern is
here the case of experiments associated with diffusion processes. Diffusion processes defined
by stochastic differential equations are widely used for modeling purposes in many fields
of applications (stochastic models in finance, pharmacokinetic/pharmacodynamic models
in biological sciences, ... ). As density estimation and nonparametric regression, diffu-
sion models are complex and looking for simpler equivalent experiments is worthwhile. In
Larédo (1990), an asymptotic sufficiency property of some incomplete observation is proved;
Genon-Catalot et al. (2002) studied the equivalence of a diffusion having positive drift and
small constant diffusion coefficient with a white noise model and other related experiments;
Delattre and Hoffmann (2002) studied the equivalence of diffusions with compactly sup-
ported drift and constant diffusion coefficient (null recurrent model) with a mixed Gaussian
white noise. Dalalyan and Reiss (2006, 2007) studied the equivalence of one-dimensional
and multidimensional diffusions with ergodic properties and constant diffusion coefficient
with Gaussian white noise.

Discrete time approximations to a continuous time stochastic process are ubiquitous
in the applied mathematical sciences and engineering . The Euler scheme is a classical
discrete time approximation to diffusion processes and possesses the advantage of being
an autoregressive Markov model with Gaussian transitions. In the parametric framework,
the Euler scheme likelihood is classically used as a contrast process and yields optimal
estimators (see e.g. Genon-Catalot 1990 for the small variance asymptotics, Kessler 1997 for
ergodic diffusions, Gobet 2002 for the LAN property implying the optimality of parametric
estimators based on the Euler scheme approximation). In the nonparametric framework,
Milstein and Nussbaum (1998) proved the asymptotic equivalence of a diffusion process
continuously observed on a fixed time interval [0, T ] having unknown drift function and
constant small known diffusion coefficient with the corresponding Euler scheme. They also
obtained the asymptotic sufficiency of the discretized observation of the diffusion with small
sampling interval.
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In this paper, we consider the experiments associated with a scalar diffusion (ξt) with
unknown drift function b(.) and known non constant diffusion coefficient σ(.) continuously
or discretely observed on a time interval [0, T ] whose length T tends to infinity. Our aim
is to prove that these nonparametric experiments are equivalent to the corresponding Euler
scheme experiment, which is an autoregression model thus simpler. A noteworthy conse-
quence of this equivalence result is that it justifies the use of the Euler scheme statisti-
cal model in nonparametric problems too. In Dalalyan and Reiss (2006), this property is
proved for a diffusion coefficient equal to 1. The extension to the case of a non constant
diffusion coefficient is not straightforward and actually surprisingly difficult. The asymp-
totic equivalences are established by constructing explicit equivalence mappings through the
introduction of experiments obtained by random time changes. In addition to the equiva-
lence results, the equivalence mappings provide recipes to find the correspondence betweeen
optimal procedures.

Let us now precise the framework of the paper. We consider the one dimensional diffusion
process (ξt) given by

dξt = b(ξt)dt + σ(ξt)dWt, ξ0 = η, (1)

where (Wt)t≥0 is a Brownian motion defined on a probability space (Ω,A, (At)t≥0, P), η is a
real valued random variable, A0-measurable, b(.), σ(.) are real-valued functions defined on
R. The diffusion coefficient σ(.) is known and satisfies the following condition:

(C) σ(.) ∈ C2(R) and there exist positive constants σ0, σ1, Kσ such that

∀x ∈ R σ2
0 ≤ σ2(x) ≤ σ2

1, |σ′(x)| + |σ′′(x)| ≤ Kσ.

We present three nonparametric experiments for estimating the drift function b(.) in equation
(1). The first experiment ET

0 is associated with the continuous observation of (ξt) up to
time T . The second experiment Eh,n is associated with the discrete observations of (ξt)
with sampling interval h up to time T = nh, i.e. observation of (ξih), 0 ≤ i ≤ n. The
third experiment Gh,n is associated with the Euler scheme of (1) with sampling interval h
up to time T = nh, i.e. observation of (Zi), 0 ≤ i ≤ n (see (9)) for the precise definition
of (Zi)). Our main result (Theorem 6.1) states that, under Condition (C), for estimating
b(.) in a class FK detailed later on (see (H1)), the three experiments ET

0 , Eh,n and Gh,n are
asymptotically equivalent as n → ∞ for the Le Cam deficiency distance ∆ if, simultaneously,
h = hn → 0, T = nhn → ∞ or is bounded, and nh2

n → 0. The equivalence of ET
0 and Eh,n

shows that the discretization is an asymptotically sufficient statistic for ET
0 , a result which

can also be deduced from Dalalyan and Reiss (2006). The main difficulties occur for getting
the equivalence of ET

0 and the Euler scheme Gh,n.

The paper is organized as follows. Assumptions and notations are given in Section 2.
We build, in Section 3, a continuous experiment, the continuous Euler scheme, which is
equivalent to the experiment associated with the Euler scheme Gh,n in the sense of the Le
Cam deficiency distance ∆ (Lemma 3.3). Then, we prove in Section 4 that, as n → ∞,
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the asymptotic equivalence of the discretized diffusion experiment Eh,n and the continuous
diffusion experiment ET

0 , if h = hn → 0 and nh2
n → 0. We consider, in Section 5, the

two random time changes on the diffusion and on the continuous Euler scheme leading to
processes with constant diffusion coefficient. For non constant diffusion coefficient, these two
random times are distinct. We prove the exact ∆-equivalence of ET

0 (resp. the continuous
Euler scheme) with the random time changed experiment. Finally, Section 6 contains the
proof of Theorem 6.1. In Section 8, the definition and some properties of the Le Cam
deficiency distance ∆ between statistical experiments are recalled (8.1), and finally some
useful auxiliary results are gathered in 8.2.

2 Assumptions and notations

The function b(.) is unknown and varies in the class FK of functions satisfying, for K a
given positive constant:

(H1) b(.) ∈ C1(R) and for all x ∈ R, |b(x)| + |b′(x)| ≤ K.

Condition (C) and Assumption (H1) ensure that the stochastic differential equation (1) has
a unique strong solution process (ξt)t≥0. Moreover, the function

F (x) =

∫ x

0

1

σ(u)
du (2)

is well defined and one-to-one and the two functions

f(x) =
b(x)

σ2(x)
and µ(x) =

b(F−1(x))

σ(F−1(x))
− 1

2
σ′(F−1(x)) (3)

are Lipschitz and bounded:

∀x, y ∈ R, |f(x) − f(y)| ≤ L|x − y|, |f(x)| ≤ K

σ2
0

, (4)

∀x, y ∈ R, |µ(x) − µ(y)| ≤ M |x − y|, |µ(x)| ≤ C, (5)

with L = K
σ2
0
(1 + 2Kσσ1

σ2
0

), M = Kσ1
σ0

(1 + Kσ

σ0
+ +1

2σ0), C = K
σ0

+ 1
2Kσ.

We introduce below the transformed process (ηt = F (ξt)) which satisfies:

dηt = µ(ηt)dt + dWt, η0 = F (η). (6)

Let us construct our experiments. Let C(R+, R) be the space of continuous real functions
defined on R

+, and denote by (Xt , t ≥ 0) the canonical process of C(R+, R) given by
(Xt(x) = x(t), t ≥ 0) for x ∈ C(R+, R), C0

t = σ(Xs, s ≤ t), Ct = ∩s>tC0
s and C = σ(Ct, t ≥ 0).

Let us denote by Pb the distribution of (ξt, t ≥ 0) defined by (1) on (C(R+, R), C).
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Now, if T is a (Ct)-stopping time, we can define the restriction Pb/CT
of Pb to the σ-field

CT . The experiment associated with the continuous observation of (ξt) stopped at T is given
by:

ET
0 =

(
C(R+, R), CT , (Pb/CT

, b ∈ FK)
)
. (7)

We are interested in discrete observations of the diffusion with sampling interval h > 0. Let
us denote by (πi)i≥0 the canonical projections of R

N → R given by (πi(x) = xi, i ≥ 0) for
x ∈ R

N and set Gn = σ(π0, π1, . . . , πn) and G = σ(Gn, n ≥ 0). Let P h
b denote the distribution

of (ξih)i≥0 defined by equation (1) on (RN,B(RN)). If N is a (Gn)- stopping time, we consider
the restriction P h

b /GN
of P h

b to GN , The experiment associated with the discrete observations
(ξih), with sampling interval h and stopping at N , is given by:

Eh,N = (RN,GN , (P h
b /GN

, b ∈ FK). (8)

Then, let us consider the Euler scheme corresponding to (1), with sampling interval h. Let
us set ti = ih and define for i ≥ 1,

Z0 = η, Zi = Zi−1 + hb(Zi−1) + σ(Zi−1)(Wti − Wti−1) (9)

We denote by Qh
b the distribution of (Zi, i ≥ 0) defined by (9) on (RN,B(RN)). For N a (Gn)-

stopping time, we consider the restriction Qh
b /GN

of Qh
b to GN . The experiment associated

with the discrete Euler scheme (Zi) with sampling interval h and stopping at N is:

Gh,N = (RN,GN , (Qh
b /GN

, b ∈ FK)). (10)

We use in the sequel the Le Cam theory (Le Cam, 1986) for comparing statistical ex-
periments. A short recap of this theory is given in Section 8.1.

3 Equivalence of the discrete and the continuous Euler

scheme experiments

Given a path x(.) ∈ C(R+, R) and a sampling scheme ti = ih, i ≥ 1, we can define the
diffusion-type process ξt,

dξt = bh(t, ξ.)dt + σh(t, ξ.)dWt, ξ0 = η. (11)

where

bh(t, x.) =
∑

i≥1

b(x(ti−1)1(ti−1,ti](t), σh(t, x.) =
∑

i≥1

σ(x(ti−1)1(ti−1,ti](t). (12)

Let us denote by Qb the distribution of (ξt, t ≥ 0) defined by (11) on (C(R+, R), C).
Now, if T is a (Ct)-stopping time, we can define the restriction Qb/CT

of Qb to the σ-field
CT . We define:

GT
0 =

(
C(R+, R), CT , (Qb/CT

, b ∈ FK)
)
. (13)
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Lemma 3.1. If ξ(.) is solution of (11) on Ω, then, using notation (9), (ξti , i ≥ 0) = (Zi, i ≥
0).

Proof. We have ξ0 = Z0 = η. Then

ξt1 = (t1 − 0)b(ξ0) + σ(ξ0)(Wt1 − W0) (14)

= b(η)(t1 − 0) + σ(η)(Wt1 − W0) = Z1

By induction, assume that ξtj = Zj for j = 0, 1, . . . , i. Then

ξti+1
= ξti + b(ξti)(ti+1 − ti) + σ(ξti)(Wti+1 − Wti) = Zi+1

Thus, (ξti , i ≥ 0) = (Zi, i ≥ 0).

Let us define the linear interpolation of (Zi, i ≥ 0):

y(t) = Zi +
t − ti

ti+1 − ti
(Zi+1 − Zi) if t ∈ [ti, ti+1] and i ≥ 0. (15)

Lemma 3.2. The solution (ξt, t ≥ 0) of (11) is equal to:

ξt = y(t) + σ(Zi)Bi(t), if t ∈ [ti, ti+1] and i ≥ 0, (16)

where Bi(t) = Wt − Wti − t−ti
ti+1−ti

(Wti+1 − Wti). The process (ξt) is adapted to (At).

The processes ((Bi(t), t ∈ [ti, ti+1]), i ≥ 0) are independent Brownian bridges and the se-
quence ((Bi(t), t ∈ [ti, ti+1]), i ≥ 0) is independent of the sequence (Zj , j ≥ 0).

Proof. Let t ∈ [ti, ti+1],

ξt = Zi + b(Zi)(t − ti) + σ(Zi)(Wt − Wti).

Thus, using (15),
ξt = y(t) + σ(Zi)Bi(t),

where (Bi(t)) is the Brownian bridge defined in Lemma 3.2 for ti ≤ t ≤ ti+1. It is such that
(Bi(ti+u), u ∈ [0, h]) has the distribution of (Wu−u

hWh, 0 ≤ u ≤ h). Using that, for all i ≥ 0,
Bi(t) is Ati+1- measurable and independent of Ati yields that (Bi, i ≥ 0) are independent
processes. Now, by elementary computations, we get that (Bi(.), i ≥ 0) is independent of
the vector (Wti+1 − Wti , i ≥ 0). Since Z0 is independent of (Wt, t ≥ 0), we first get the
independence of Z0 and (Bi(.), Wti+1 − Wti , i ≥ 0). This implies that Z0, (Bi(.), i ≥ 0),
(Wti+1 −Wti , i ≥ 0) are independent. As σ(Zi, i ≥ 0) ⊂ σ(Z0, Wti+1 −Wti , i ≥ 0), we obtain
the result.

Lemma 3.3. For all h > 0 and all (Gn)-stopping time N , the Le Cam deficiency distance
∆ between Gh,N and GNh

0 (see (10) and (13)) is equal to 0, i.e. ∆(Gh,N ,GNh
0 ) = 0.
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Proof. Recall that for two experiments E , E ′, ∆(E , E ′) = max(δ(E , E ′), δ(E ′, E)) where
δ(E , E ′) is the deficiency of E with respect to E ′.
The Euler scheme (Zi, i ≥ 0) is the image of the sample path (ξt, t ≥ 0) by the mapping
x(.) → (x(ti), i ≥ 0). Therefore δ(GNh

0 ,Gh,N ) = 0.
Consider now, for each ω ∈ Ω, the application

Φ : R
N → C(R+, R)

(xi, i ≥ 0) → x(.) with

∀i ≥ 0, t ∈ [ti−1, ti], x(t) = xi−1 +
t − ti−1

ti − ti−1
(xi − xi−1) + σ(xi−1)Bi−1(t, ω).

Then, by Lemma 3.2, the experiment GNh
0 is the image, by the randomization Φ of Gh,N .

Therefore δ(Gh,N ,GNh
0 ) = 0. Hence the result.

4 Asymptotic sufficiency of the discretized diffusion

In this section, we study the experiments Enhn

0 (continuous observation (ξt, t ≤ nhn)) and
Ehn,n (discrete observation (ξti , i ≤ n) with ti = ihn) and prove that their are asymptotically
equivalent, hence that the discretization (ξti , i ≤ n) is an asymptotically sufficient statistic
for Enhn

0 . We use the functions F, µ and the process (ηt) defined in (2), (3) and (6). Let

HT
0 =

(
C(R+, R), CT , (PF

b /CT
, b ∈ FK)

)
, (17)

where PF
b is the distribution of (ηt, t ≥ 0). And

Hh,N = (RN,GN , (P h,F
b /GN

, b ∈ FK)), (18)

where P h,F
b is the distribution of the discretization (ηti , i ≥ 0). Consider the continuous

mapping, that we again denote by F ,

x = (x(t), t ≥ 0) ∈ C(R+, R) → F (x) = (F (x(t)), t ≥ 0) ∈ C(R+, R).

It is invertible with inverse

x = (x(t), t ≥ 0) ∈ C(R+, R) → F−1(x) = (F−1(x(t)), t ≥ 0) ∈ C(R+, R).

Then, HT
0 = FET

0 (resp. Hh,N = FEh,N ) is the image of ET
0 (resp. Eh,N ) by the invertible

mapping F , and F−1HT
0 = ET

0 (resp. F−1Hh,N = Eh,N ) is the image of ET
0 (resp. Eh,N ) by

the mapping F−1. Thus

∆(ET
0 ,HT

0 ) = 0, ∆(Eh,N ,Hh,N ) = 0. (19)

Let us now compare the experiments HT
0 and Hh,N for N = n and T = nh. We need to

introduce the continuous Euler scheme associated with the diffusion (6):

dη̄t = µh(t, η̄.)dt + dWt, η̄0 = F (η), (20)
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with (see (3))

µh(t, x.) =
∑

i≥1

µ(x(ti−1)) 1(ti−1,ti](t). (21)

We introduce the corresponding experiment stopped at T :

H̄T
0 =

(
C(R+, R), CT , (QF

b /CT
, b ∈ FK)

)
,

where QF
b is the distribution of (20). We also introduce the discrete Euler scheme experiment

corresponding to the observation (η̄ti) stopped at N :

H̄h,N = (RN,GN , (Qh,F
b /GN

, b ∈ FK).

The experiments HT
0 and H̄T

0 have the same sample space and can be compared using their
∆0-distance:

∆(HT
0 , H̄T

0 ) ≤ ∆0(HT
0 , H̄T

0 ) = sup
b∈FK

||PF
b /CT

− QF
b /CT

||TV

Lemma 4.1. Assume (H1) and condition (C). Using definitions (5) for M and C, we have

||PF
b /CT

− QF
b /CT

||TV ≤ Mhn

√
n

(
2

3
C2hn + 1

)1/2

.

Proof. We first use the Pinsker inequality (see Section 8.2, Proposition 8.4) to get an upper
bound for the total variation norm by the Kullback-Leibler divergence for two probability
distributions P and Q,

||P − Q||TV ≤
√

K(P,Q)/2. (22)

As both processes are diffusion-type processes with diffusion coefficient equal to 1, the two
distributions PF

b and QF
b are equivalent on CT for T deterministic or T a bounded stopping

time w.r.t. the canonical filtration. Applying the Girsanov formula yields, with (Xt) the
canonical process of C(R+, R)),

dPF
b

dQF
b

/CT
(X) = exp

(∫ T

0
(µ(Xt) − µh(t, X.))dXt −

1

2

∫ T

0
(µ(Xt) − µh(t, X.))2dt

)
. (23)

Now, (Xt) has drift term µ under PF
b and,

K(PF
b /CT

, QF
b /CT

) = EP F
b

(
1

2

∫ T

0
(µ(Xt) − µh(t, X.))2dt +

∫ T

0
(µ(Xt) − µ(t, X.))dWt

)

=
1

2
EP F

b

(∫ T

0
(µ(Xt) − µh(t, X.))2dt

)
.

Using (3), (5), (21), this term satisfies,

K(PF
b /CT

, QF
b /CT

) =
1

2

n−1∑

i=0

EP F
b

∫ ti+1

ti

(µ(Xt) − µ(Xti))
2dt

≤ M2

2

n−1∑

i=0

EP F
b

∫ ti+1

ti

(Xt − Xti)
2dt.
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Now, by (6) and (5), µ2(x) ≤ C2 and, under PF
b , Xt satisfies that, for ti ≤ t ≤ ti+1,

(Xt − Xti)
2 ≤ 2(

∫ t

ti

µ(Xs)ds)2 + 2(Wt − Wti)
2

≤ 2C2(t − ti)
2 + 2(Wt − Wti)

2.

Hence,

EP F
b

∫ ti+1

ti

(Xt − Xti)
2dt ≤ K2h2

n

∫ ti+1

ti

(1 + EP F
b

X2
s )ds + h2

n.

Proposition 4.1. Assume (H1) and condition (C). If h = hn and nh2
n tend to 0, then

∆(Enhn

0 , Ehn,n) → 0.

Remark : Recall that nh2
n = Thn. Hence the result includes both cases: fixed observation

time T or T = nhn → ∞. ♦

Proof. The triangle inequality and the fact that the ∆0-distance between experiments having
the same sample space is larger than their ∆-distance yield:

∆(Enhn

0 , Ehn,n) ≤ ∆(Enhn

0 ,Hnhn

0 ) + ∆0(Hnhn

0 , H̄nhn

0 )

+∆(H̄nhn

0 , H̄n,hn) + ∆0(H̄n,hn ,Hhn,n) + ∆(Hhn,n, Ehn,n).

On the right-hand side, there are nul terms. Indeed, by (19), we have

∆(Enhn

0 ,Hnhn

0 ) = ∆(Ehn,n,Hhn,n) = 0.

The continuous and the discrete Euler scheme being equivalent experiments yields:

∆(H̄nhn

0 , H̄hn,n) = 0 .

There remains two terms. As the experiment Hhn,n (resp. H̄n,hn)) is a restriction of Hnhn

0

(resp. H̄nhn

0 ) to a smaller σ-algebra,

∆0(Hhn,n, H̄nhn) ≤ ∆0(Hnhn

0 , H̄nhn

0 )

Using the previous lemma, we have , under the condition nh2
n → 0,

∆0(Hnhn

0 , H̄nhn

0 ) ≤ 2Mhn

√
n

(
2

3
C2hn + 1

)1/2

→ 0.
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We must now draw some conclusions of these results. First, Enhn

0 and Ehn,n are asymp-
totically equivalent, i.e. the discrete observation (ξti , i ≤ n) is an asymptotically sufficient
statistic for (ξt, t ≤ nhn). Second, for a diffusion (ηt) with diffusion coefficient equal to
1 (or constant), the experiment associated with the discrete observation (ηti , i ≤ n) is
asymptotically equivalent to the experiment corresponding to its continuous Euler scheme
(η̄t, t ≤ n∆n) or to its discrete Euler scheme (η̄ti , i ≤ n). So the result of the paper is
achieved for diffusions with constant diffusion coefficients.

However, we have not proved that the experiment Enhn

0 is asymptotically equivalent to
Gnhn

0 as these experiments have non constant and distinct diffusion coefficients, respectively
the function σ(.) and σ̄h(t, x.) defined in (12).

5 Random time changed experiments

5.1 Time change on the diffusion

As the function σ is known, we introduce the following functionals defined on C(R+, R), for
all t, u ≥ 0:

x ∈ C(R+, R), ρt(x) =

∫ t

0
σ2(x(s))ds; τu(x) = inf{t ≥ 0, ρt(x) ≥ u}. (24)

Note that, by condition (C),

ρ+∞(x) = +∞,
u

σ2
1

≤ τu(x) ≤ u

σ2
0

, ρτu(x)(x) = u, τρt(x)(x) = t. (25)

Consider the experiment Eτa(X)
0 stopped at time τa(X). In order to obtain a constant

diffusion coefficient, we introduce the time changed process associated with ξ solution of
(1):

∀u ≥ 0, Yu = ξτu(ξ). (26)

Let P̃b denote the distribution of (Yu, u ≥ 0) on (C(R+, R), C)). Then, for A > 0 a (Ct)-
stopping time, define the experiment

ẼA
0 = (C(R+, R), CA, (P̃b/CA

, b ∈ FK)). (27)

Proposition 5.1. Assume (H1) and (C). Let ξ be the solution of (1) and let Y be defined
by (26) using (24). Then,

dYu = f(Yu) du + dBu, Y0 = η,

where f(y) = b(y)
σ2(y

(see (3)) and (Bu) is a Brownian motion with respect to the filtration

(Gu = Aτu(ξ)), u ≥ 0).

9



Proof. The following proof relies on classical results (see e.g. Karatzas and Shreve (2000),
5.5). We have Y0 = ξ0 = η and

Yu = ξτu(ξ) = ξ0 +

∫ τu(ξ)

0
b(ξs)ds +

∫ τu(ξ)

0
σ(ξs)dWs. (28)

The change of variable s = τv(ξ) ⇔ v = ρs(ξ) yields that dv = σ2(ξs)ds = σ2(Yv)dτv(ξ) so
that, for 0 ≤ v ≤ a,

dτv(ξ)

dv
=

1

σ2(Yv)
and Yu = Y0 +

∫ u

0

b(Yv)

σ2(Yv)
dv + Bu,

where the process (Bu) is defined by

Bu =

∫ τu(ξ)

0
σ(ξs)dWs.

We have < B >u=
∫ τu(ξ)
0 σ2(ξs)ds = u. Hence, (Bu) is a standard Brownian motion with

respect to the filtration (Gu = Aτu(ξ)) and (Yu) defined in (26) is a diffusion process with

drift coefficient b
σ2 (.), constant (= 1) diffusion coefficient and initial condition Y0 = η, which

is G0 measurable. Note that (Gu) satisfies the usual conditions by the continuity of τ.(ξ).

Proposition 5.2. Under (H1) and (C), for a > 0 deterministic,

∆(Eτa(X)
0 , Ẽa

0 ) = 0.

Analogously, for T > 0 deterministic, we have (see (24):

∆(ET
0 , ẼρT (X)

0 ) = 0.

Proof. We only proof the first point as the second is analogous. By the previous proposition,

Ẽa
0 is the image of Eτa(X)

0 by the measurable mapping (x(t), t ∈ [0, τa(x)]) → (y(u) =

x(τu(x)), u ∈ [0, a]), which implies δ(Eτa(ξ)
0 , Ẽa

0 ) = 0.
Let us consider now the reverse operation. Let (Bu, u ≥ 0) be a standard Brownian motion
with respect to a filtration (Gu) satisfying the usual conditions and Y0 be a G0-measurable
random variable. We define, for u ≥ 0,

Yu = Y0 +

∫ u

0

b(Yv)

σ2(Yv)
dv + Bu, (29)

Tu = Tu(Y ) =

∫ u

0

dv

σ2(Yv)
.

Clearly, the mapping u → Tu is a bijection from [0, a] onto [0, Ta] with inverse t → T−1(t) :=
At. Therefore, we can define, for 0 ≤ t ≤ Ta, the process

ξt = YAt .

10



The change of variable v = As ⇔ s = Tv yields that ds = dv/σ2(Yv) = dv/σ2(YAs) =
dv/σ2(ξs) and equation (29) becomes

ξt = ξ0 +

∫ At

0

b(Yv)

σ2(Yv)
dv + BAt = ξ0 +

∫ t

0
b(ξs)ds + BAt .

Now, (Mt = BAt) is a martingale with respect to the filtration (GAt) satisfying

< M >t= At =

∫ At

0
ds =

∫ t

0
σ2(YAs)ds =

∫ t

0
σ2(ξs)ds.

This shows that τu(ξ) = A−1(u) = Tu and that (ξt) has distribution Pb. Note that, as (At)
is continuous, the filtration (GAt) inherits the usual conditions from (Gt).

Finally, we can express the above properties on the canonical space. Let y = (y(v), v ≥ 0)
and set Tu(y) =

∫ u
0 dv/σ2(y(v)) with inverse A.(y). Consider the measurable mapping

Ψ : y ∈ C(R+, R) → (x := y(At(y)), t ≥ 0) ∈ C(R+, R).

As

At(y) =

∫ t

0
σ2(x(s))ds = ρt(x),

we see that A.(y)−1(u) = τu(x). Thus, (ξ(t), t ≤ τa(ξ))) is the image of (Y (u), u ≤ a) by

the mapping Ψ. Hence, δ(Ẽa
0 , Eτa(X)

0 ) = 0.

5.2 Time change on the continuous Euler scheme

Let us now consider the continuous Euler scheme (ξu) defined in (11), (12) and define
analogously:

ρt(x) =

∫ t

0
σ2

h(s, x.)ds, τu(x) = inf{t ≥ 0, ρt(x) ≥ u}. (30)

Using (12), (ρt(x)) satisfies, for i ≥ 0 and ti < t ≤ ti+1,

ρt(x) = ρti(x) + (t − ti)σ
2
h(ti, x.) = h

i−1∑

j=0

σ2(x(tj)) + (t − ti)σ
2(x(ti)), (31)

(with
∑i−1

j=0 = 0 for i = 0). Note that

ρti(x) = h
i−1∑

j=0

σ2(x(tj)). (32)

11



Hence, (ρt(x), t ≥ 0) is continuous, strictly increasing on R
+, and maps each interval (ti, ti+1]

on the interval (ρti(x), ρti+1
(x)].

Condition (C) ensures that

ρ+∞(x) = +∞,
u

σ2
1

≤ τu(x) ≤ u

σ2
0

+ ∆, (33)

and that t → ρt(x) and u → τu(x) are inverse. In particular, for all i and all trajectory x

ti = τρti
(x)(x). (34)

For ξ the solution of (11), we define, for u ≥ 0,

Y u = ξτu(ξ), (35)

which is adapted to the filtration
(Gu = Aτu(ξ)). (36)

Denote by Q̃b the distribution of (Y u, u ≥ 0). We now describe the distribution Q̃b with
more precision.

Proposition 5.3. The process (Y u) defined in (35) is a process with constant diffusion
coefficient equal to 1 and drift term given by:

f(v, .) =
∑

i≥0

f(Y ρti
(ξ)) 1(ρti

(ξ),ρti+1
(ξ)](v), (37)

where f(v, .) is predictable w.r.t. the filtration (Gu) and f = b/σ2 (see (3)).

Proof. By definition of (Y u), we have

Y u = ξ0 +

∫ τu(ξ)

0

∑

i≥0

b(ξti)1ti<s≤ti+1ds + Bu where (38)

Bu =

∫ τu(ξ)

0

∑

i≥0

σ(ξti)1ti<s≤ti+1dWs.

The process (Bu) is a martingale with respect to Gu = Aτu(ξ) with quadratic variations:

< B >u=

∫ τu(ξ)

0

∑

i≥0

σ2(ξti)1ti<s≤ti+1ds = u.

12



Therefore (Bu) is a Brownian motion with respect to (Gu).
In the ordinary integral of (38), the change of variable s = τ v(ξ) ⇔ v = ρs(ξ) yields, noting
that for v ∈ (ρti(ξ), ρti+1

(ξ)], dv = σ2(ξti)ds and using (34),

Y u = ξ0 +

∫ u

0

∑

i≥0

b(ξti)

σ2(ξti)
1ρti

(ξ)<v≤ρti+1
(ξ) dv + Bu, (39)

where ξti = Y ρti
(ξ) = Zi is the discrete Euler scheme (see Lemma 3.1).

Thus, (Y u) defined in (35) is a process with constant diffusion coefficient equal to 1 and
drift term given by f(v, .). We now check that f(v, .) is predictable w.r.t. the filtration
(Gu) i.e. that, for all i, ρti(ξ) is a (Gu)-stopping time and that Y ρti

(ξ) is Gρti
(ξ)-measurable.

Noting that, for all u,
(ρti(ξ) ≤ u) = (τu(ξ) ≥ ti)

belongs to Gu = Aτu(ξ) yields that ρti(ξ) is a (Gu)-stopping time. We know that

Y ρti
(ξ) = ξti

is Ati-measurable, which achieves the proof since Ati = Gρti
(ξ).

We consider, for a > 0, the experiments Gτa(X)
0 (see (13)) and

G̃a
0 = (C(R+, R), Ca, (Q̃b/Ca , b ∈ F)). (40)

Proposition 5.4. For all a > 0 deterministic,

∆(Gτa(X)
0 , G̃a

0 ) = 0.

Analogously, for all T > 0 deterministic,

∆(GT
0 , G̃ρT (X)

0 ) = 0.

Proof. We only prove the first point. The proof is divided in several steps.

First, as the experiment G̃a
0 is the image of the experiment Gτa(X)

0 by the measurable mapping

(x(t), t ≤ τa(x)) → (y(u) = x(τu(x)), u ∈ [0, a]), δ(Gτa(X)
0 , G̃a

0 ) = 0.

We now prove that δ(G̃a
0 ,Gτa(X)

0 ) = 0. For this, we first construct a process (Y u) with

distribution Q̃b (step 1). Then, we construct a process (Xt) with distribution Qb obtained
from (Y u) by the measurable mapping (y(u), u ∈ [0, a] → (y(ρt(y.)), t ≤ τa(y.)) (step 2).

Step 1.

Let (Bu) be a standard Brownian motion with respect to a filtration (Gu) satisfying the
usual conditions and assume that X0 is G0 - measurable. Then, we define recursively a

13



sequence of random times (Ti) and a continuous process (Y u) as follows. We first set T0 = 0
and Y 0 = X0. Then

T1 = T1(Y ) = σ2(Y 0)t1, Y u = Y 0 +
b(Y 0)

σ2(Y 0)
u + Bu, for 0 < u ≤ T1.

Ti = Ti(Y ) = Ti−1 + σ2(Y Ti−1)(ti − ti−1), (41)

Y u = Y Ti−1 +
b(Y Ti−1)

σ2(Y Ti−1)
(u − Ti−1) + Bu − BTi−1 , for Ti−1 < u ≤ Ti. (42)

Lemma 5.1. The sequence (Ti) is an increasing sequence of (Gu)-stopping times such that,
for all i ≥ 1, Ti is GTi−1 measurable. Moreover, the process (Y u) defined in (41),(42) is
adapted to (Gu) and is a diffusion-type process with diffusion coefficient equal to 1 and drift
coefficient equal to

f(u, y.) =
∑

i≥1

f(y(Ti−1(y.)))1Ti−1(y.)<u≤Ti(y.),

where (Ti(y.), i ≥ 0) are recursively defined as in (41)-(42) using the trajectory y. and
f = b/σ2 (see (3)). Hence, the process (Y u) has distribution Q̃b.

Proof. First note that T1 is G0-measurable, and thus {T1 ≤ u} ∈ G0 ⊂ Gu . Hence T1 is a

(Gu) -stopping time. Now, Y u = Y 0 + b(Y 0)

σ2(Y 0)
u + Bu is, for all u, Gu-measurable. Thus, T1

and Y T1 are GT1 measurable.
By induction, assume that, for 1 ≤ j ≤ i, Tj is GTj−1-measurable, that Tj is a (Gu)-stoppping

time, and that Y u given by (42) for u ≤ Ti is Gu-measurable.

Recall that, for u > Ti, Y u = Y Ti
+

b(Y Ti
)

σ2(Y Ti
)
(u − Ti) + Bu − BTi

defined by (42) is Gu-

measurable. As Ti+1 = Ti + σ2(Y Ti
)(ti+1 − ti), the induction assumption yields that Ti+1 is

GTi
-measurable. By Condition (C), Ti < Ti+1. Hence, using the induction assumption,

∀v ≥ u, {Ti+1 ≤ u} = {Ti+1 ≤ u} ∩ {Ti ≤ v} ∈ Gv.

This implies that {Ti+1 ≤ u} = {Ti+1 ≤ u}⋂∩v>u{Ti ≤ v} ∈ ∩v>uGv = Gu which proves
that Ti+1 is a (Gu)-stopping time. Thus, Ti+1 and Y Ti+1 are GTi+1-measurable.
The proof is now complete.

Step 2.
Let us define

σ(t, Y .) =
∑

i≥1

σ(Y Ti−1)1]ti−1,ti](t), (43)

ρt(Y .) =

∫ t

0
σ2(s, Y .)ds and τa(Y .) = inf{t; ρt(Y .) ≥ a}. (44)

14



We set
Xt = Y ρt(Y .)

(45)

and look at the distribution of (Xt, t ≤ τa(Y .)). Note that, for all i ≥ 0,

ρti(Y .) = Ti. (46)

is a (Gu)-stopping time ( see Lemma 5.1). We need to check that, for all t, ρt(Y .) is a (Gu) -
stopping time. Noting that, for ti ≤ t ≤ ti+1, ρt(Y .) = Ti+(t−ti)σ

2(Y Ti
) is GTi

-measurable,
we can write

∀v > u, {ρt(Y .) ≤ u} = {ρt(Y .) ≤ u} ∩ {Ti ≤ v} ∈ Gv.

This implies that {ρt(Y .) ≤ u} = {ρt(Y .) ≤ u}⋂∩v>u{Ti ≤ v} ∈ ∩v>uGv = Gu which
proves that ρt(Y .) is a (Gu)-stopping time.

Thus we can define the filtration (At := Gρt(Y .)
) to which (Xt) is adapted. By construc-

tion, τa(Y .) is a (At)-stopping time.

Lemma 5.2. The sequence (Xti = Y Ti
, i ≥ 0), where (Y u) is defined by (41)-(42) and (Xt)

is defined in (45), has the distribution of the discrete Euler scheme (9).

Proof. For all i ≥ 0, the process

(B̄(i)
v = BTi+v − BTi

, v ≥ 0) (47)

is a Brownian motion independent of GTi
= Ati , adapted to the filtration (GTi+v). As

Xti = Y Ti
is GTi

-measurable, this r.v. is independent of (B̄
(i)
v , v ≥ 0). Let us define

εi+1 =
BTi+1 − BTi√

Ti+1 − Ti
=

B̄
(i)

σ2(Y Ti
)(ti+1−ti)

σ(Y Ti
)
√

ti+1 − ti
. (48)

The random variable εi+1 is GTi+1-measurable. We can write,

Y Ti+1 = Y Ti
+ b(Y Ti

)(ti+1 − ti) + σ(Y Ti
)
√

ti+1 − ti εi+1, i ≥ 0. (49)

To conclude, it is enough to prove that (εi, i ≥ 1) is a sequence of i.i.d. standard Gaussian
random variables, independent of G0.
Applying Proposition 8.3 of the Appendix yields that, for all i ≥ 0, εi+1 is a standard Gaus-
sian variable independent of GTi

. This holds for i = 0 and proves that ε1 is independent of
G0 and has distribution N (0, 1). By induction, assume that (εk, k ≤ i − 1) are i.i.d. stan-
dard Gaussian random variables, independent of G0. Consider Z a G0-measurable random
variable. As (Z, εk, k ≤ i − 1)) is GTi

-measurable, we get that εi+1 is a standard Gaussian
variable independent of (Z, εk, k ≤ i − 1)). This completes the proof of Lemma 5.2.

Define now (x(t)) as the linear interpolation between the points (ti, Xti). We now
describe the processes (Xt − x(t)) for ti ≤ t ≤ ti+1 .
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Lemma 5.3. For t ∈ [ti, ti+1],

Xt = x(t) + σ(Xti)C̄i(t),

where (C̄i(t), ti ≤ t ≤ ti+1) is a sequence of independent Brownian bridges adapted to the
filtration (At). The sequence of processes ((C̄i(t), ti ≤ t ≤ ti+1), i ≥ 0) is independent of the
sequence (Xtj , j ≥ 0).

Proof.

y(u) = Y Ti
+ +

u − Ti

Ti+1 − Ti
(Y Ti+1 − Y Ti

).

Using (48)-(49), we obtain, for u ∈ [Ti, Ti+1], :

Y u = y(u) + Bu − BTi
− u − Ti

Ti+1 − Ti
σ(Y Ti

)
√

ti+1 − ti
BTi+1 − BTi√

Ti+1 − Ti

= y(u) + Di(u) with

Di(u) = Bu − BTi
− u − Ti

Ti+1 − Ti
(BTi+1 − BTi

). (50)

Now, for ti ≤ t ≤ ti+1, using (41),(43),(44),(46), we get x(t) = y(ρt(Y .)), Thus,

Xt − x(t) = Di(ρt(Y .)).

Using the Brownian motion defined in (47), we get

Xt − x(t) = B
(i)

σ2(Xti
)(t−ti)

− t − ti
ti+1 − ti

B
(i)

σ2(Xti
)(ti+1−ti)

= σ(Xti)C̄i(t), (51)

which defines C̄i(t).
Proving that the sequence (Xti , i ≥ 0) is independent of the sequence of processes ((C̄i(t), t ∈
[ti, ti+1]), i ≥ 0) is equivalent to proving that (X0, εi, i ≥ 1) is independent of ((C̄i(t), t ∈
[ti, ti+1]), i ≥ 0). We now prove that, for all i ≥ 1, (X0, ε1, . . . , εi) is independent of
(C̄0, . . . , C̄i−1) and that the latter processes are independent Brownian bridges. For this, we

use Proposition 8.3 of the Appendix. With B = B
(i−1)

, F. = GTi−1+., τ = σ2(Xti−1), i ≥ 1,
we deduce that

Wi(t − ti−1) =
B

(i−1)

σ2(Xti−1)(t−ti−1)

σ(Xti−1)
, t ≥ ti−1,

is a Brownian motion, independent of GTi−1 . Thus, (C̄i−1(t), t ∈ [ti−1, ti]) is a Brownian
bridge independent of Wi(ti − ti−1) = εi

√
ti − ti−1. Moreover, GTi−1 , Wi(ti − ti−1), and

(C̄i−1(t), t ∈ [ti−1, ti]) are independent.

For i = 1, as X0 is G0-measurable, we get that X0, ε1, C̄0 are independent and C̄0

is a Brownian bridge. By induction, let us assume that X0, ε1, . . . , εi, C̄0, . . . , C̄i−1 are
independent and that C̄0, . . . , C̄i−1 are Brownian bridges (on their respective interval of
definition). As Z = (X0, ε1, . . . , εi, C̄0, . . . , C̄i−1) is GTi−1-measurable, we get that Z, εi+1, C̄i

are independent. This achieves the proof.
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6 Main result

We can now state the main result of this paper.

Theorem 6.1. Assume (H1) and (C). For deterministic N = n, for h = hn, the two
sequences of experiments (Ehn,n) and (Ghn,n) are asymptotically equivalent, in the sense of
the Le Cam deficiency distance ∆ as n → ∞ if hn → 0, nhn → ∞ and nh2

n → 0 ,

∆(Ehn,n,Ghn,n) → 0

Set T = nhn and consider the stopping times

τn = ρnhn
(X), τ̄n = ρnhn

(X), Sn = τ̄n ∧ τn. (52)

Before going into the last steps, let us make a brief summary using the time changed
experiments. We have the following inequality:

∆(Ehn,n,Ghn,n) ≤
∆(Ehn,n, Enhn

0 ) + ∆(Enhn

0 , Ẽτn

0 ) + ∆(Ẽτn

0 , G̃ τ̄n

0 ) + ∆(G̃ τ̄n

0 ,Gnhn

0 ) + ∆(Gnhn

0 ,Ghn,n).

By Lemma 3.3 and 4.1, we have, as n → +∞, hn → 0, nhn → +∞, nh2
n → 0,

∆(Gnhn

0 ,Ghn,n) = 0, ∆(Enhn

0 , Ehn,n) → 0.

By Propositions 5.2 and 5.4,

∆(Enhn

0 , Ẽτn

0 ) → 0, ∆(Gnhn

0 , G̃ τ̄n

0 ) → 0.

Hence, to achieve the proof of Theorem 6.1, it remains to study ∆(Ẽτn

0 , G̃ τ̄n

0 ). Here , these
two experiments are observed up to distinct stopping times, which leads to an additional
difficulty. Using (52), the triangle inequality yields:

∆(Ẽτn

0 , G̃ τ̄n

0 ) ≤ ∆(Ẽτn

0 , ẼSn

0 ) + ∆(ẼSn

0 , Ẽ τ̄n

0 ) + ∆(Ẽ τ̄n

0 , G̃ τ̄n

0 ). (53)

Therefore, we have to study the ∆- deficiency distance respectively for the same experiment
observed up to two distinct times and for two experiments observed up to the random time
τ̄n.

The result will follow from Propositions 6.1 and 6.2 which are proved afterwards.
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6.1 Experiments stopped at τ̄n

Let us first study the last term of (53). These two experiments of have the same sample space
and are respectively associated with the family of distributions P̃b (resp Q̃b ) on C(R+, R)
of (Yu, u ≥ 0) given by (26) (resp. (Y u, u ≥ 0) given by (35) ). Hence,

∆(Ẽ τ̄n

0 , G̃ τ̄n

0 ) ≤ sup
b∈F

||P̃b/Cτ̄n
− Q̃b/Cτ̄n

||TV = ∆0(Ẽ τ̄n

0 , G̃ τ̄n

0 ).

Proposition 6.1. Under (H1) and (C), we have,

∆0(Ẽ τ̄n

0 , G̃ τ̄n

0 ) ≤ Lσ2
1(nh2

n)1/2

(
K2σ2

1hn

3σ4
0

+
1

2

)1/2

.

Proof. Using the bound of Proposition (8.4) yields

||P̃b/CA
− Q̃b/CA

||TV ≤
√

1

2
K(P̃b/CA

, P̃b/CA
).

These two distributions are associated with diffusion type processes so , noting that Y0 = Y 0,
an application of the Girsanov formula up to the a.s. finite random time A = A(X.) = τ̄n(X.)
( with (Xv) the canonical process of C(R+, R)) yields,

dP̃b/CA

dQ̃b/CA

= exp

(∫ A

0
(f(Xv − f̄(v, X.))dXv −

1

2

∫ A

0
(f(Xv) − f̄(v, X.))2dv

)
. (54)

Hence, using that (Xt) has drift term f under P̃b yields,

K(P̃b/CA
, Q̃b/CA

) = EP̃b

(
1

2

∫ A

0
(f(Xv) − f̄(v, X.))2dXv +

∫ A

0
(f(Xv) − f̄(v, X.))dBv

)

=
1

2
EP̃b/CA

(∫ A

0
(f(Xv) − f̄(v, X.))

2dv

)
.

Setting Ti = Ti(X) and using (5.1), we get,

∫ A

0
(f(Xv) − f̄(v, X.))

2dv =
∑

i≥1

∫ A∧Ti

A∧Ti−1

(
f(Xv) − f(XTi−1

)2
dv.

Using now that f = b/σ2 is Lipschitz with constant L (see (4)) and that , for i = 1, . . . , n,
Ti = Ti(X.) = ρti(X.) yields

∫ τ̄n

0
(f(Xv) − f̄(v, X.))

2dv ≤ L2
n∑

i=1

∫ Ti

Ti−1

(
Xv − XTi−1

)2
dv. (55)

Under P̃b,

Xv − XTi−1 =

∫ v

Ti−1

f(Xu)du + Bv − BTi−1 ,

18



where (Bv) is a Brownian motion. Therefore,

(
Xv − XTi−1)

)2 ≤ 2



(∫ v

Ti−1

f(Xu)du

)2

+ (Bv − BTi−1)
2


 .

This yields ∫ τ̄n

0
(f(Xv) − f̄(v, X.))

2dv ≤ 2L2(A1(τ̄n) + A2(τ̄n)),

with

A1(τ̄n) =

n∑

i=1

∫ Ti

Ti−1

(∫ u

Ti−1

f(Xv)dv

)2

du; A2(τ̄n) =

n∑

i=1

∫ Ti

Ti−1

(
Bu − BTi−1

)2
du (56)

Using (4) and that Ti − Ti−1 ≤ σ2
1hn by (41),

A1(τ̄n) ≤ K2

σ4
0

n∑

i=1

(Ti − Ti−1)
3 ≤ K2

σ4
0

n(σ2
1hn)3,

For the second term, using definition (47),

A2(τ̄n) =
n∑

i=1

∫ Ti

Ti−1

(
Bu − BTi−1

)2
du ≤

n∑

i=1

∫ σ2
1hn

0
(B̄(i)

v )2dv. (57)

Thus,

K(P̃b/Cτ̄n
, Q̃b/Cτ̄n

) ≤ 2L2

(
K2

3σ4
0

n(σ2
1hn)3 + n

(σ2
1hn)2

2

)

Hence, the result.

6.2 An asymptotic sufficiency property

Let us recall that τn = ρnhn
(X), τ̄n = ρnhn

(X) and Sn = inf(τnτ̄n) (see (52)) . It remains
to prove (see (53)) that

∆(ẼSn

0 , Ẽτn

0 ) → 0, ∆(ẼSn

0 , Ẽ τ̄n

0 ) → 0

i.e. to prove the asymptotic sufficiency of CSn for the experiments Ẽτn

0 and Ẽ τ̄n

0 .

Lemma 6.1. Under (H1), there exists a constant D depending on K, Kσ, σ1, σ0 such that,

EP̃b
|τn − τ̄n| ≤ Dnh2

n.

(D = 2K2
σ + 2KKσ

σ0
+
(

2
3(K2

σ + σ1Kσ)
)1/2

).
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Proof. By (24) and (32),

τn − τ̄n =

n∑

i=1

∫ ti

ti−1

(
σ2(Xv) − σ2(Xti−1)

)
dv.

Under P̃b, we get, denoting by L the generator of the diffusion (Yu) (Lf = 1
2f ′′ + b

σ2 f ′),

σ2(Xv) = σ2(Xti−1) +

∫ v

ti−1

Lσ2(Xu)du +

∫ v

ti−1

(σ2)′(Xu)dBu,

Thus,
∫ ti
ti−1

(
σ2(Xv) − σ2(Xti−1)

)
dv = B1(i) + B2(i), with

B1(i) =

∫ ti

ti−1

dv

∫ v

ti−1

Lσ2(Xu)du ; B2(i) =

∫ ti

ti−1

dv

∫ v

ti−1

(σ2)′(Xu)dBu.

Now Condition (C) and (H1) ensure that ‖Lσ2‖∞ is bounded by D1 = Kσ(σ1 + Kσ + 2K
σ0

)
so that,

|B1(i)| ≤ D1
h2

n

2
.

For the second term changing integrations yields,

B2(i) =

∫ ti

ti−1

dv

∫ v

ti−1

(σ2)′(Xu)dBu =

∫ ti

ti−1

(ti − u)(σ2)′(Xu)dBu.

Thus,

n∑

i=1

B2(i) =

∫ nhn

0
H(n)

u dBu, where H(n)
u =

n∑

i=1

1]ti−1,ti](u)(ti − u)(σ2)′(Xu).

This stochastic integral is well defined with finite quadratic variation and satisfies under
Condition (C),

EP̃b

(
n∑

i=1

B2(i)

)2

= EP̃b

∫ nhn

0
(H(n)

u )2du ≤ ‖(σ2)′‖2
∞ n

h3
n

3
.

Finally, joining these two results and applying the Burkholder-Davies-Gundy inequality with
D′ = D1

2 ∨ (2σ1Kσ

3 )1/2

EP̃b
|τn − τ̄n| ≤ D′(nh2

n + (nh3
n)1/2) = D′ nh2

n(1 +
1√
nhn

) ≤ D′ nh2
n.

This achieves the proof if nhn is bounded or goes to infinity with n.

Proposition 6.2. Under (H1) and (C), we have,

∆(Eτn

0 , ESn

0 ) ≤ K

21/2σ2
0

(cnh2
n)1/2, ∆(E τ̄n

0 , ESn

0 ) ≤ K

21/2σ2
0

(cnh2
n)1/2.
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Proof. As ESn

0 is a restriction of Eτn

0 to a smaller σ-algebra, δ(Eτn

0 , ESn

0 ) = 0.

To evaluate the other deficiency, we introduce a kernel from ESn

0 to Eτn

0 . Let A ∈ Cτn ,
and set

N(ω, A) = EP̃0
(1A|CSn)(ω).

Using the kernel N , N(P̃b|CSn) defines a probability on (Ω, Cτn). Let us compute the density
of the probability N(P̃b|CSn) w.r.t. P̃0|Cτn : for A ∈ Cτn ,

N(P̃b|CSn)(A) =

∫

Ω
N(ω,A)d(P̃b|CSn) = EP̃0

(
dP̃b

dP̃0

|CSnEP̃0
(1A|CSn)

)
= EP̃0

(
dP̃b

dP̃0

|CSn1A

)
.

Thus, the probability N(P̃b|CSn) on (Ω, Cτn) admits a density w.r.t. P̃0|Cτn equal to

dP̃b

dP̃0

|CSn .

(Here, P̃0 corresponding to b = 0, is the distribution of (η + Bu, u ≥ 0)). Denote by L̃T (b)

the density dP̃b

dP̃0
|CT for any bounded stopping time T . We have

L̃T (b) = exp (

∫ T

0
f(Xu)dXu −

∫ T

0

1

2
f2(Xu)du)

with f = b/σ2. Thus,

dP̃b

dP̃0

|Cτn = L̃τn(b) = L̃Sn(b)Vn =
dP̃b

dP̃0

|CSnVn,

with

Un = log Vn =

∫ τn

Sn

f(Xu)dXu −
∫ τn

Sn

1

2
f2(Xu)du.

We deduce:
dP̃b|Cτn

dN(P̃b|CSn)
= Vn.

By the Pinsker inequality (see Section 8.2 and Tsybakov (2009)), we have:

‖N(P̃b|CSn) − P̃b|Cτn‖TV =
1

2

∫

Ω
dP̃0|L̃Sn(b) − L̃τn(b)|

≤
√

K(P̃b|Cτn , N(P̃b|CSn))/2.

Now, by Lemma 6.1

K(P̃b|Cτn , N(P̃b|CSn)) = EP̃b|Cτn
Un = EP̃b|Cτn

∫ τn

Sn

1

2
f2(Xu)du ≤ K2

2σ4
0

EP̃b
|τn − τ̄n|
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≤ K2

σ4
0

cnh2
n.

As
δ(ESn

0 , Eτn

0 ) ≤ sup
b∈FK

‖N(P̃b|CSn) − P̃b|Cτn‖TV ,

we obtain the first inequality. We proceed analogously for the other inequality.

7 Extensions

If we do not assume that b is bounded, then, we have to make additional assumptions on f ,
µ, (Yu) and (ηt) defined in (3),(28) and (6):

(H2) f and µ are Lipschitz.

(H3) supu≥0 EY 2
u + supt≥0 Eη2

t ≤ K.

Indeed, instead of using the bounds for f, µ, we have to use their linear growth (f2(x) +
µ2(x) ≤ C(1+x2) for a constant C). Then, when taking expectations in the proofs of Lemma
4.1, Proposition 6.1, Lemma 6.1 and Proposition 6.2, uniform upper bounds of second-order
moments are required. Assumption (H3) is fulfilled for instance when the diffusion model
for ξ is ergodic with Eη2 < +∞ (η = ξ0).

8 Apppendix

8.1 The Le Cam deficiency distance

In this section, we recall the main definitions and properties used in relation with the Le
Cam deficiency distance. The Le Cam distance between statistical experiments is generally
denoted by ∆. In what follows, all measurable spaces are supposed to be Polish metric
spaces equipped with their Borel σ-algebras. The Le Cam distance was introduced to
compare experiments having the same parameter space F , but possibly different sample
spaces. Consider two statistical experiments E = (Ω,A, (Pf )f∈F ) and G = (X , C, (Qf )f∈F )
and assume that the two families (Pf )f∈F , (Qf )f∈F are dominated. A Markov kernel
M(ω, dx) from (Ω,A) to (X , C) is a mapping from Ω into the set of probability measures on
(X , C) such that:

• For all C ∈ C, ω → M(ω, C) is measurable on (Ω,A),
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• For all ω ∈ Ω, M(ω, dx) is probability measure on (X , C).

The image MPf of Pf under M is defined by:

MPf (C) =

∫

Ω
M(ω,C)dPf (ω).

The experiment ME = (X , C, (MPf )f∈F ) is called a randomisation of E by the kernel M .
If the kernel is deterministic, i.e. for T : (Ω,A) → (X , C) a random variable, T (ω,C) =
1C(T (ω)), the experiment TE is called the image experiment by the random variable T .

Let MΩ:X denote the set of Markov kernels from (Ω,A) to (X , C).

Definition 8.1. (1) The deficiency of E with respect to G is given by

δ(E ,G) = inf
M∈MΩ:X

sup
f∈F

||MPf − Qf ||TV ,

where ||.||TV denotes the total variation norm for measures.

(2) ∆(E ,G) = max{δ(E ,G), δ(G, E)}.

Actually, ∆ is a pseudo-distance. When ∆(E ,G) = 0, the two experiments are said to
be equivalent.
When the two experiments have the same sample space : (Ω,A) = (X , C), it is possible to
define

∆0((E ,G) = sup
f∈F

||Pf − Qf ||TV .

The following inequality is useful:

∆(E ,G) ≤ ∆0(E ,G).

The sufficiency of a σ-algebra or a statistic can be expressed in terms of the ∆-distance.

Proposition 8.1. Consider the experiment E and let B ⊂ A be a σ-algebra on Ω. Consider
the experiment experiment E/B = (Ω,B, Pf/B) which is the restriction of E to B. Then, B
is sufficient for E if and only if ∆(E , E/B) = 0.
Let T : (Ω,A) → (X , C) be a random variable. The statistic T is sufficient for E if and only
if ∆(E , TE) = 0.

Proof. Consider first the deterministic kernel from (Ω,A) to (Ω,B) given by M(ω,B) =
1B(ω). As MPf = Pf/B, δ((E , E/B) = 0. Then, consider the kernel N from (Ω,B) to (Ω,A)
given by:

N(ω, A) = EPf
(1A|B).

By the sufficiency of B, N(ω, A) = EP∗
(1A|B) admits a version independent of the parame-

ter f . By the assumption on the sample spaces, there is a regular version of the conditional
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probability given B. Hence, δ((E/B, E) = 0.
By definition, the statistic T is sufficient is the σ-algebra σ(T ) is sufficient. As
∆(TE , E/σ(T )) = 0, it follows immediately that T is sufficient if and only if ∆(E , TE) = 0.

Note that, when the family (Pf ) is dominated by a probability of the model Pf0 for some
f0 ∈ F , then, we can take N(ω,A) = EPf0

(1A|B).

Now, we introduce an asymptotic framework ε → 0 and consider the families of
experiments Eε = (Ωε,Aε, (P ε

f )f∈F ), Gε = (X ε, Cε, (Qε
f )f∈F ), Bε ⊂ Aε a σ-algebra,

T ε : (Ωε,Aε) → (X ε, Cε) a statistic.

Definition 8.2. • The families Eε, Gε are said to be asymptotically equivalent as ε tends
to 0 if ∆(Eε,Gε) tends to 0.

• The σ-algebra Bε is said to be asymptotically sufficient if ∆(Eε, Eε/Bε) tends to 0.

• The statistic T ε is asymptotically sufficient if ∆(Eε, T εEε) tends to 0.

The comparison of statistical experiments with different sample spaces is difficult. So,
it is often the case that an accompanying experiment Hε = ((Ωε,Aε, (Rε

f )f∈F ) having the
same sample space as Eε is introduced. Then, we have the following result.

Proposition 8.2. • If, as ε tends to 0, ∆0(Eε,Hε) tends to 0 and ∆(Hε,Gε) tends to
0, then, the families Eε and Gε are asymptotically equivalent.

• If, as ε tends to 0, ∆0(Eε,Hε) tends to 0 and ∆(Hε, T εHε) tends to 0, then T ε is
asymptotically sufficient for Eε.

Proof. For the first point, we use the inequality:

∆(Eε,Gε) ≤ ∆(Eε,Hε) + ∆(Hε,Gε) ≤ ∆0(Eε,Hε) + ∆(Hε,Gε).

For the second point,

∆(Eε, T εEε) ≤ ∆(Eε,Hε) + ∆(Hε, T εHε) + ∆(T εHε, T εEε) ≤ 2∆0(Eε,Hε) + ∆(Hε, T εHε).

8.2 Auxiliary results

The following results are used above.

Proposition 8.3. Let (Bt, t ≥ 0) be a Brownian motion with respect to a filtration (Ft, t ≥
0) (satisfying the usual conditions) and let τ be a positive F0-measurable random variable.
Then, the process (W (t) = 1√

τ
Bτt, t ≥ 0) is a standard Brownian motion, independent of

F0.
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Proof. As τ is F0-measurable, for all t ≥ 0, τt is a (Ft)- stopping time. By the optional
sampling theorem, we deduce that the processes (Bτt, t ≥ 0) and (B2

τt − τt, t ≥ 0) are local
martingales with respect to the filtration (Fτt), with continuous sample paths, null at 0. As
τ is F0-measurable, the same holds for the two processes (W (t)) and (W 2(t)− t). Thus, by
Paul Lévy’s characterization, we deduce that (W (t)) is a Brownian motion, with respect to
the same filtration. Thus, (W (t)) is independent of F0.

We recall useful inequalities for the total variation distance between probability mea-
sures. The following one is called the first Pinsker inequality (see e.g Tsybakov, 2009).

Let (X ,A) be a measurable space, P,Q two probability measures on (X ,A), ν a σ-finite
measure on (X ,A) such that P ≪ ν, Q ≪ ν and set p = dP/dν, q = dQ/dν. The total
variation distance between P and q is defined by:

||P − Q||TV = sup
A∈A

|P (A) − Q(A)| =
1

2

∫
|p − q|dν.

The Kullback divergence of P w.r.t. Q is given by:

K(P,Q) =

∫
log

dP

dQ
dP if P ≪ Q, = +∞ otherwise.

Proposition 8.4.

||P − Q||TV ≤
√

K(P,Q)/2.

The remarkable feature of this inequality is that the left-hand side is a symetric quantity
whereas the right-hand-side is not. The noteworthy consequence is that it is possible to
choose, for the right-hand-side, K(P,Q) or K(Q, P ).
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[12] Larédo, C. (1990). A sufficient condition for asymptotic sufficiency of incomplete ob-
servations of a diffusion process. Ann. Statist. 18 1158-1171.

[13] Le Cam, L.( 1986) Asymptotic Methods in Statistical Decision Theory. Springer, New
York.

[14] Le Cam, L. and Yang, L.G. (2000). Asymptotics in Statistics. Some Basic Concepts .
2nd Edition. Springer, New York.

[15] Milstein, G. and Nussbaum, M. (1998). Diffusion approximation for nonparametric
autoregression. Probab. Theory Related Fields 112 535-543.

[16] Nussbaum, M. (1996). Asymptotic equivalence of density estimation and Gaussian
white noise. Ann. Statist. 24 2399-2430.

[17] Reiss, M. (2008). Asymptotic equivalence for nonparametric regression with multivari-
ate and random design. Ann. Statist. 36 1957-1982.

[18] Tsybakov, A. B. (2009). Introduction to nonparametric estimation. Revised and ex-
tended from the 2004 French original. Translated by Vladimir Zaiats. Springer Series
in Statistics. Springer, New York.

26


