Fracture and debonding of a thin film on a stiff substrate: analytical and numerical solutions of a one-dimensional variational model - Archive ouverte HAL
Article Dans Une Revue Continuum Mechanics and Thermodynamics Année : 2013

Fracture and debonding of a thin film on a stiff substrate: analytical and numerical solutions of a one-dimensional variational model

Blaise Bourdin
Jean-Jacques Marigo
Corrado Maurini

Résumé

Westudymulti-fissurationanddebondingphenomenaofathinfilmbondedtoastiffsubstrateusing the variational approach to fracture mechanics. We consider a reduced one-dimensional membrane model where the loading is introduced through uniform inelastic (e.g., thermal) strains in the film or imposed dis- placements of the substrate. Fracture phenomena are accounted for by adopting a Griffith model for debonding and transverse fracture. On the basis of energy minimization arguments, we recover the key qualitative prop- erties of the experimental evidences, like the periodicity of transverse cracks and the peripheral debonding of each regular segment. Phase diagrams relate the maximum number of transverse cracks that may be created before debonding takes place, as a function of the material properties and the sample's geometry. The theo- retical results are illustrated with numerical simulations obtained through a finite element discretization and a regularized variational formulation of the Ambrosio-Tortorelli type, which is suited to further extensions in two-dimensional settings.
Fichier principal
Vignette du fichier
2012-CMT-BalBouMarMau_vo.pdf (3.15 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00736782 , version 1 (29-09-2012)

Identifiants

Citer

Andrés Alessandro Leon Baldelli, Blaise Bourdin, Jean-Jacques Marigo, Corrado Maurini. Fracture and debonding of a thin film on a stiff substrate: analytical and numerical solutions of a one-dimensional variational model. Continuum Mechanics and Thermodynamics, 2013, 25 (2--4), pp.243--268. ⟨10.1007/s00161-012-0245-x⟩. ⟨hal-00736782⟩
278 Consultations
222 Téléchargements

Altmetric

Partager

More