Set-Valued Bayesian Inference with Probabilistic Equivalence - Archive ouverte HAL
Communication Dans Un Congrès Année : 2012

Set-Valued Bayesian Inference with Probabilistic Equivalence

Résumé

In this paper, a unified view of the problem of class-selection with Bayesian classifiers is presented. Selecting a subset of classes instead of singleton allows 1) to reduce the error rate and 2) to propose a reduced set to another classifier or an expert. This second step provides additional information, and therefore increases the quality of the result. The proposed framework, based on the evaluation of the probabilistic equivalence, allows to retrieve the class-selective frameworks that have been proposed in the literature. Several experiments show the effectiveness of this generic proposition.
Fichier principal
Vignette du fichier
rpc-CR.pdf (77.71 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00732834 , version 1 (28-05-2014)

Identifiants

  • HAL Id : hal-00732834 , version 1

Citer

Hoel Le Capitaine. Set-Valued Bayesian Inference with Probabilistic Equivalence. Int. Conf. on Pattern Recognition, Nov 2012, Tsukuba, Japan. pp.1-4. ⟨hal-00732834⟩
241 Consultations
83 Téléchargements

Partager

More