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Abstract

In this paper, a unified view of the problem of class-

selection with Bayesian classifiers is presented. Select-

ing a subset of classes instead of singleton allows 1) to

reduce the error rate and 2) to propose a reduced set to

another classifier or an expert. This second step pro-

vides additional information, and therefore increases

the quality of the result. The proposed framework,

based on the evaluation of the probabilistic equiva-

lence, allows to retrieve the class-selective frameworks

that have been proposed in the literature. Several ex-

periments show the effectiveness of this generic propo-

sition.

1. Introduction and basic material

The process of accurately recognizing, or discrimi-

nating, objects in databases is a fundamental task in data

analysis. Considered as a pattern recognition problem,

there have been many propositions for the classification

of the objects. Naturally, the more a priori informa-

tion is known, the more the classification algorithm can

be built according to this knowledge, therefore leading

to a powerful recognition system. In the special case

where a priori probabilities and conditional densities are

known, the Bayes decision rule is known to be optimal

by minimizing the error rate [12]. However, real distri-

butions are never known in advance, so that the models

do not reflect the data. Moreover, in many recognition

problems, the data that must be classified is issued from

mixed and/or noisy classes. In particular, it is not un-

common to find classes that are overlapping in the fea-

ture space, or some samples that do not belong to any

class of the learning set.

Number of investigation in the field of pattern recog-

nition focus on problems with a large number of classes

(e.g. face identification, image classification, charac-

ter recognition and so on ...). Therefore, the possibil-

ity of selecting a small subset of classes, which can be

associated to a new, larger class, containing the previ-

ous classes, shows a growing interest [2]. Finally, an-

other growing interest resides in multi-label classifica-

tion [13], where a sample can be associated to a subset

of true labels.

In this paper, the Bayesian statistical decision theory

is taken as the basis of the analysis. Therefore, we start

with the following three factors: the distribution family

p(x|θ), prior distribution for the parameters π(θ) and a

loss function ℓ(θ, α), where α is an action of the deci-

sion space A [12]. An effective comparison criterion is

the a posteriori expected loss, which can be written as

R(α,x) =

∫

Θ

ℓ(θ, α)p(θ|x)dθ (1)

where Θ is the state space (we consider in the sequel

the discrete case where the cardinal of Θ is equal to

c). The posterior probability p(θ|x) is obtained thanks

to the Bayes theorem, knowing the distribution family

and priors on θ ∈ Θ. Under the Bayes principle, the

optimal rule is obtained by choosing for x the action α
that minimize the expected loss:

α(x) = arg min
α∈A

R(α,x)

Naturally, if the expected loss (1) is minimum for all

x, then the overall risk is also minimized. If one seeks

to minimize the error probability of classification, then

the zero-one loss function is used. One may also al-

low other actions than a binary and strict association

to classes. For instance, the reject option consists in

adding another action in A [1, 14]. The action leads to

refuse, or withhold, the decision for the current sample.

This is particularly useful in close cases i.e. when the

largest posterior probabilities are close. Naturally, the

no decision action must have a cost, or a loss, that needs

to be modeled under the Bayes minimum risk setting.

In this paper, we are interested in an even more in-

creased action space A. In particular, we consider the



power set of Θ. Therefore, each sample x can be as-

sociated to one element of the power set. The subset

selection procedure is described in the next section.

2. Subset selection

The basic principle of set-valued classification is al-

lowing to select a subset of classes of interest. The sub-

set can subsequently be used as whether an entry for

another classification with large error costs, or an out-

put for multi-label classification. Depending on the ap-

plication, the loss function can be designed differently.

We focus in this paper on the first one. In this first ap-

plication, the goal is to reduce the error probability by

selecting more than one class, but selecting all classes

does not provide any profit of the algorithm. Therefore,

a compromise between the number of selected classes

and the error probability must be found. A simple solu-

tion consists in dividing the loss function into two parts,

the error loss ℓe and the selection loss ℓn [5]. The error

loss can be adapted from the so-called symmetrical loss

function

ℓe(θi, αj) =

{

0 if θi ∈ Aj

Ce otherwise

where Aj is the selected subset of A with action αj , and

Ce the cost of an error. The selection loss is a function

of the number of selected classes

ℓn(αj) = Cn|Aj |

where Cn is the cost of selecting classes, and |.| is the

cardinal. From now on, we suppose that posterior prob-

abilities are sorted such that p(θk+1|x) ≤ p(θk|x) for

all k in {1, · · · , c − 1}. With this formulation, one can

prove that the following decision rule αj(x) yields an

optimum trade-off between the error and the number of

selected classes [5]

n⋆(x) = min
k∈[1,c]

{k : p(θk+1|x) ≤ t}, p(θc+1|x) ≡ 0

(2)

where |Aj | = n⋆(x), Aj is composed of the n⋆(x)
largest posterior probabilities, and t a threshold in the

unit interval defined by Cn/Ce. Note that the reverse,

i.e. subset rejection, has been proposed in [9]. The

threshold t is defined by ratio of costs so that it is mostly

application dependent, but a generic evaluation can be

proposed, as it is proposed in Section 4

Another proposition, coming from Horiuchi in [6],

can be used to define a set-valued output of classes. The

corresponding decision rule is defined by

n⋆(x) = min
k∈[1,c]

{k : 1−
(

p(θk|x)− p(θk+1|x)
)

≤ t},

(3)

using the same convention p(θc+1|x) ≡ 0. However,

this proposition is not obtained using a loss function and

can be seen as an heuristic.

Another heuristic, proposed in [8], defined by

n⋆(x) = min
k∈[1,c]

{k :
p(θk+1|x)

p(θk|x)
≤ t}, (4)

also uses a notion of similarity between consecutive

posterior probabilities. We restrict in this paper to

standard approaches of class-selection, but it should be

noted that other strategies based on blockwise similari-

ties [10] or support vector machines [4] have been pro-

posed.

3. Probabilistic equivalence

In this section, we propose to design a new deci-

sion rule based on the equivalence of posterior prob-

abilities. The equivalence is obtained by considering

a probabilistic metric (PM) space where a convenient

metric is chosen between two values. Formally, a met-

ric space consists of a set X and a metric d allowing to

compute distances between two points u, v lying in X .

A PM space replaces the distance d(u, v) between the

two points by considering a distribution function Fuv ,

whose value Fuv(x), for any x in X , corresponds to

the probability that d(u, v) ≤ x. However, one of the

most important property of distances is that they hold

the triangle inequality d(u,w) ≤ d(u, v) + d(v, w), for

(u, v, w) ∈ X3. The corresponding problem with dis-

tribution function relies on the comparison and relation-

ships of Fuw, Fuv and Fvw. This is the rationale under

the proposition of Menger [11], introducing the follow-

ing inequality:

Fuw(x+ y) ≥ T (Fuv(x), Fvw(y))

where T is a triangular norm (t-norm), i.e. a commuta-

tive, associative and monotone binary function, having

1 as identity, see [7] for details. Let us consider the

t-norm defined by

T (x, y) =
(

max
(

xλ + yλ − 1, 0
))1/λ

where (x, y) ∈ [0, 1]2 and λ ∈ [−∞,∞]. It leads to the

following residual implication between x and y

I(x, y) =

{

(

1 + yλ − xλ
)1/λ

if x ≥ y
1 otherwise

(5)

Based on this implication, a T-equivalence is obtained

with

E(x, y) = min (I(x, y), I(y, x)) (6)



Applied to posterior probabilities, we propose to define

the new decision rule as

n⋆(x) = min
k∈[1,c]

{k : E
(

p(θk|x), p(θk+1|x)
)

≤ t},

(7)

called here after PE for Probabilistic Equivalence.

Now, let us consider some particular cases of (7) when

using the equivalence (6) obtained by the implication

defined by (5).

• if λ is set to −∞, then E(x, y) = y, giving the

decision rule (2).

• if λ is set to 0, then E(x, y) reduces to y/x, giving

the decision rule (4).

• finally, if λ = 1, then E(x, y) = 1 + y − x, which

gives the decision rule (3).

Due to lack of place, the proofs of these statements will

be given in a longer paper. As can be seen, the proposed

rule allows to retrieve the set-valued decision rules of

the literature.

4. Experiments

In theory, the rule defined by (2) is the optimum deci-

sion rule in the sense that there are no other rules yield-

ing a lower error rate for a given average number of

selected classes. This optimum is reached when the dis-

tribution of the data is known and true which is rarely

the case in practice. Moreover, this is an optimum rule

with respect to the average number of selected classes,

which may not be the only criteria that must be con-

sidered. Therefore, in this section a comparative study

between the three common rules and the new one is pro-

posed.

4.1. Experimental setup and evaluation metric

In the experiments, 4 datasets publicly available [3]

are used: Vowel, Letter, Segment and USPS. Important

statistics of the datasets are given in Table 1. These

datasets are chosen for two particular reasons. First,

they present a large variety in terms of number of

classes, number of features and number of samples.

Second they are all coming from applications where al-

lowing to select a subset of classes is very interesting:

character recognition and image segmentation. In order

to select the parameter λ, we use a grid search in the

range [−10, 10] based on a 2-fold cross validation that

is repeated 5 times. Two different classifiers are used in

this study: a naive Bayes (NB) classifier and a quadratic

classifier (QB) assuming normal densities. It is impor-

tant to note that what is evaluated here is the selection

step, and not the classifiers. The two classifiers are used

Table 1. Datasets used in the experiments.

Dataset #training #testing #classes #feat.

Segment 2310 0 7 19

Vowel 528 462 11 10

Letter 15000 5000 26 16

USPS 7291 2007 10 256

in order to assess the consistency of a possible superi-

ority of a decision rule for a given classifier.

Reject options, and more generally class-selective

decision rules cannot be evaluated by considering only

their corresponding accuracy. This is due to two ma-

jor reasons. The first is that they generally use a spec-

ified threshold, therefore giving different classification

and rejection rates. The second reason comes from the

tradeoff they imply. For the reject option, the tradeoff to

find is between a low error rate and a low rejection rate.

For class-selective decision, the tradeoff concerns a low

error rate, and a low average number of selected classes.

Therefore, a common quality measure is to evaluate the

area under the curve (Error(Rate) for the reject options,

Error(Average) for class-selective). However, this eval-

uation measure is not adapted for the comparison of de-

cision rules used on different classifiers, because each

classifier provides different accuracies without reject-

ing samples. We propose to define the normalized area

under the curve in order to overcome this problem. This

evaluation measure must take into account the baseline

performance of classifier, so that we define the normal-

ized area under the curve (nAUC) by

nAUC =

∫ 1

0
(C(t)− C0) dt

∫ 1

0
(1− C0) dt

(8)

where C0 is the baseline accuracy of the classifier (i.e.

the classification rate without reject option), and t is the

threshold used in the decision rule (7). The term C(t)
is the classification rate obtained by selecting subset of

classes using (7). The convention is to say that the clas-

sification is good if one label of the subset is the true

label of the sample.

It can be proved that C0 ≤ C(t) ≤ 1 for any t in

the unit interval (we have in particular C(0) = 1 and

C(1) = C0), so that 0 ≤ nAUC ≤ 1. A nAUC equal

to 1 means that far any t, the error rate with subset selec-

tion is equal to zero, while nAUC value equal to zero

means that adding subset of classes does not increase

the classification rate at all. Therefore, the higher the

better for nAUC.

4.2. Results

The evaluation criteria (8) is computed for each

dataset, each classifier and each decision rule. Results



Table 2. Normalized AUC for all datasets and all decision rules. Right column indicates the

average rank of decision rules over all datasets.

Datasets

Classifier Rule Segment Vowel Letter USPS Avg. Rank

Ha 63.61% 84.77% 81.61% 72.79% 3

Horiuchi 64.80% 65.04% 70.59% 77.85% 3

NB Le Capitaine 64.67% 82.17% 79.89% 78.13% 2.75

PE 72.38% 85.09% 84.94% 83.68% 1

Ha 92.50% 59.25% 83.44% 73.54% 3.5

Horiuchi 89.04% 53.27% 85.09% 80.17% 3.25

QB Le Capitaine 92.88% 60.33% 90.79% 79.50% 2.25

PE 94.07% 60.46% 91.07% 84.61% 1

are given in Table 2. As can be seen in the table, the

PE decision rule gives the best results for both clas-

sifiers and all datasets. Naturally, other comparisons

using many other datasets would be required to assess

a definitive superiority of the decision rule PE, but it

gives encouraging results. Looking more in depth the

results, one can say that one can observe a larger dif-

ference between rules for NB than for QB, which is ex-

plained by the quality of estimation of posterior prob-

abilities. The nAUC score is generally better for QB

than for NB, due to the performances rates of individ-

ual methods. While the ratio rule (Le Capitaine) ranks

second for both classifiers, the performances of Ha and

Horiuchi rules are comparable. Some datasets lead to

remarkably bad results, for instance Vowel for Hori-

uchi’s rule, or USPS for Ha’s rule. Finally, one can see

that there is great benefit of introducing class selection

for the USPS and Segment datasets.

5. Conclusion

In this paper, a generalized approach to class-

selection is presented. Given a classifier providing pos-

terior probabilities outputs, the proposed rule allows to

retrieve the three class-selective decision rules proposed

in the literature. In this paper, a simple grid search is

used to find the parameter, but investigations on auto-

matic learning of the parameter λ based on the correct

set of classification of each sample is under study. As

a potential future work, let us mention the multi-label

multi-class classification, where each sample may be-

long to several classes.
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