Constraint scores for semi-supervised feature selection: A comparative study - Archive ouverte HAL Access content directly
Journal Articles Pattern Recognition Letters Year : 2011

Constraint scores for semi-supervised feature selection: A comparative study

Mariam Kallakech
  • Function : Correspondent author
  • PersonId : 930122

Connectez-vous pour contacter l'auteur
Philippe Biela
  • Function : Author
  • PersonId : 930123
Ludovic Macaire

Abstract

Recent feature selection scores using pairwise constraints (must-link and cannot-link) have shown better performances than the unsupervised methods and comparable to the supervised ones. However, these scores use only the pairwise constraints and ignore the available information brought by the unlabeled data. Moreover, these constraint scores strongly depend on the given must-link and cannot-link subsets built by the user. In this paper, we address these problems and propose a new semi-supervised constraint score that uses both pairwise constraints and local properties of the unlabeled data. Experiments using Kendall's coefficient and accuracy rates, show that this new score is less sensitive to the given constraints than the previous scores while providing similar performances.
Fichier principal
Vignette du fichier
articlesoumis_en_deuxieme_version.pdf (1.82 Mo) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

hal-00732484 , version 1 (14-09-2012)

Identifiers

Cite

Mariam Kallakech, Philippe Biela, Ludovic Macaire, Denis Hamad. Constraint scores for semi-supervised feature selection: A comparative study. Pattern Recognition Letters, 2011, 32 (5), pp.656-665. ⟨10.1016/j.patrec.2010.12.014⟩. ⟨hal-00732484⟩
123 View
452 Download

Altmetric

Share

Gmail Mastodon Facebook X LinkedIn More