(Nearly-)Tight Bounds on the Linearity and Contiguity of Cographs - Archive ouverte HAL
Communication Dans Un Congrès Année : 2012

(Nearly-)Tight Bounds on the Linearity and Contiguity of Cographs

Résumé

In this paper we show that the contiguity and linearity of cographs on n vertices are both O(log n). Moreover, we show that this bound is tight for contiguity as there exists a family of cographs on n vertices whose contiguity is Omega(log n). We also provide an Omega(log n / log log n) lower bound on the maximum linearity of cographs on n vertices. As a by-product of our proofs, we obtain a min-max theorem, which is worth of interest in itself, stating equality between the rank of a tree and the minimum height of one of its path partitions.
Fichier principal
Vignette du fichier
2012CrespelleGambetteBGW.pdf (175.64 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00730247 , version 1 (08-09-2012)

Identifiants

  • HAL Id : hal-00730247 , version 1

Citer

Christophe Crespelle, Philippe Gambette. (Nearly-)Tight Bounds on the Linearity and Contiguity of Cographs. Bordeaux Graph Workshop, Nov 2012, France. pp.2. ⟨hal-00730247⟩
240 Consultations
104 Téléchargements

Partager

More