A new method for learning Phrase Based Machine Translation with Multivariate Mutual Information - Archive ouverte HAL
Communication Dans Un Congrès Année : 2012

A new method for learning Phrase Based Machine Translation with Multivariate Mutual Information

Cyrine Nasri
  • Fonction : Auteur
  • PersonId : 929496
Chiraz Latiri
  • Fonction : Auteur
  • PersonId : 929497
Yahya Slimani
  • Fonction : Auteur
  • PersonId : 929498

Résumé

Current statistical machine translation systems usually build an initial word-to-word alignments before learning phrase translation pairs. This operation needs so many matching between di erent single words of both considered languages. We propose a new approach for phrase-based machine translation which does not need any word alignments, it is based on inter-lingual triggers determined by Multivariate Mutual Information. This algorithm segments sentences into phrases and nds their alignments simultaneously. The main objective is to build directly valid alignments between source and target phrases. Inspite of the youth of this method, experiments showed that the results are competitive but needs some more e orts in order to overcome the one of state-of-the-art methods.
Fichier principal
Vignette du fichier
102.pdf (252.32 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00727044 , version 1 (01-09-2012)

Licence

Identifiants

  • HAL Id : hal-00727044 , version 1

Citer

Cyrine Nasri, Kamel Smaïli, Chiraz Latiri, Yahya Slimani. A new method for learning Phrase Based Machine Translation with Multivariate Mutual Information. The 8th International Conference on Natural Language Processing and Knowledge Engineering - NLP-KE'12, Sep 2012, HuangShan, China. ⟨hal-00727044⟩
516 Consultations
170 Téléchargements

Partager

More