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Current statistical machine translation systems usually build an initial word-to-word

alignments before learning phrase translation pairs. This operation needs so many match-
ing between different single words of both considered languages. We propose a new ap-

proach for phrase-based machine translation which does not need any word alignments,

it is based on inter-lingual triggers determined by Multivariate Mutual Information. This
algorithm segments sentences into phrases and finds their alignments simultaneously. The

main objective is to build directly valid alignments between source and target phrases.

Inspite of the youth of this method, experiments showed that the results are competitive
but needs some more efforts in order to overcome the one of state-of-the-art methods.

Keywords: statistical machine translation; inter-lingual triggers; multivariate mutual in-

formation.

1. Introduction

Machine translation issue could be handled by several ways, some of them are

syntax-based (see Ref. 1, 2, 3 and 4), others are based on statistical models. Nowa-

days, a more attractive approach is to see how to combine a purely statistical

technique with some linguistic rules or model (see Ref. 6)

The work presented in this paper is based on statistical method. The principle con-

sists in finding the best translation of a source sentence among several ones. Thus,
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translating a sentence from language A into B involves finding the best target sen-

tence b∗ wich maximizes the probability of b given the source sentence a. Bayes rule

allows to formulate the probability P(b|a) as follows:

b∗ = argmax
b

P(b|a) = argmax
b

P(a|b)P(b) (1)

The translation process needs a language model P(b), a translation model P(a|b)
and a decoder wich calculates b∗. Language model parameters are trained on a

target corpus and its task is to build up a correct sentence from partial translations,

whereas parameters of the translation model are determined from a parallel corpus

and provides the probability that a linguistic unit is translated to another. Then, the

decoder provides the best target sentence by taking into account several parameters

provided among other the previous models. In this work, we develop a new algorithm

for extracting phrase pairs from parallel corpus. This algorithm does not require an

initial segmentation on the monolingual text. It uses inter-lingual triggers based on

Multivariate Mutual Information between the source and target phrases. In fact,

we propose an original method which retrieves automatically phrases and their

corresponding translations in one step. It means that a phrase translation is not

constructed by agglutining connected words in the target language.

The remainder of the paper is organized as follows : section 2 gives an overview of

statistical phrase-based machine translation and interlingual triggers. In section 3

and 4 we present our method for learning phrase translations. Section 5 describes

how we estimate probabilities for phrase pairs to fit into the SMT decoder. Section

6 shows how we integrate and test our new approach into an entire translation

process. Conclusion in section 7, points out the strength of our method and gives

some tracks about future work.

2. Background and related works

2.1. Statistical phrase-based machine translation

At present, best performing statistical machine translation systems are based on

phrase-based models: models that translate small word sequences at a time.

First statistical methods (see Ref. 5) were word-based models, but words, as shown,

in later works gige worse results than those based on longer units. But words may

not be the best candidates for the smallest units for translation. Sometimes one

word in foreign language is translated into two English words, or vice versa. For

instance, in French “petit déjeuner” is translated in English by “breakfast”. It is im-

portant to note that current phrase-based models are not rooted in deeply linguistic

in approach of phrases. Koehn and al. defined a phrase as a contiguous multiword

sequence, without any linguistic motivation (see Ref. 6). Phrases are mapped one-

to-one based on a phrase translation table, and may be reordered. All phrase pairs

that are consistent with the word alignment are added to the phrase table.

Modern statistical phrase-based models are based on alignment template models

(see Ref. 7 and 8).



3

These models defined phrases over word classes that were then instantiated with

words. Several methods to extract phrases from a parallel corpus have been pro-

posed. Most make use of word alignments (see Ref. 9, 10 and 11). Phrase alignment

may be done directly from senetce-aligned corpora using a probabilistic model (see

Ref. 12), pattern mining methods (see Ref. 13), or matrix factorization (see Ref.

14).

In this respect, Lavecchia proposed in Ref. 15 a method which retreives valid lin-

guistic phrases without using any alignments. This method identifies first the best

part-of-speech phrases and then from these class phrases, they extracted the corre-

sponding phrases which improve the perplexity of the source language. The obtained

phrases are linguistically pertinent and consequently the derived phrases are also

relevant. These obtained phrases are then used to rewrite the source training corpus

in terms of phrases. Let us give an example, noun det noun is one of the retrieved

part-of-speech phrases and from this pattern and the source corpus a phrase as Ta-

ble de Salon is extracted. The words of this phrase are gathered and used to rewrite

the source training corpus.

2.2. Inter-lingual Triggers

Inter-lingual triggers are inspired from triggers concept used in statistical language

modeling (see Ref. 16). A trigger is a set composed of words and its bests correlated

triggered words in terms of mutual information (MI). In Ref. 17, authors proposed

to determine correlations between words coming from two different languages. Each

inter-lingual trigger is composed by a triggering source linguistic unit and its best

correlated triggered target linguistic units. Based on this idea, we found among the

set of triggered target units, potential translations of the triggering source words.

Inter-lingual triggers are determined on a parallel corpus according to mutual in-

formation measure namely:

MI(a, b) = P(a, b) log
P(a, b)

P(a)P(b)
(2)

where a et b are respectively a source and a target words. Notice that P(a, b) is the

joint probability and P(a) and P(b) are the marginal probabilities.

For each source unit a, we kept its k best target triggered units. Interestingly enough,

this approach has been extended to take into account triggers of phrases (see Ref.

15). The drawback of this method is that phrases are built in an iterative process

starting from single words and joining others to them until expected size of phrases

is reached. In others words, at the end of the first iteration, sequences of two words

are built, the following iteration produces phrases of three words and so on until

the stop-criteria is reached. Then, once all the source phrases are built, their corre-

sponding phrases in the target language are retrieved by using n-to-n inter-lingual

trigger approach (see Ref. 15). In order to avoid the propagation of errors due to

the cascade of steps in the previous method, we propose a new approach based
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on multivariate mutual information which allows to retreive source phrases given

target once.

3. Description of the method

The new approach is based on multivariate mutual information. Before present-

ing our new approach, we introduce some necessary formalizations related to the

multivariate mutual information (MMI).

3.1. Principle of multivariate mutual information

Typically, mutual information is defined and studied between just two variables.

Though the approach to evaluate bivariate mutual information is well established,

several problems in multi-user information theory require the knowledge of inter-

action between more than two variables. Since there exists dependency between

the variables, we cannot decipher their relationship without considering all of them

at once. The seminal work on the information-theoretic analysis of the interaction

between more than two variables was first studied in Ref. 22.

The definition of mutual information has been extended to e general case (over more

than three variables) by Fano (see Ref. 23) and re-formulated in a lattice-theoretic

framework by Han (see Ref. 24). Though each have taken different approaches and

the expressions are in terms of different entities (mutual informations on one case

and entropies in the other), they can be simplified to be the same.

In this sense, we define the multivariate mutual information as follows:

MMI(X,Y ) =
∑

x1..xn∈X
y1..ym∈Y

P (x1, x2, ..., xn, y1, y2, ..., ym)

log
P (x1, x2, ..., xn, y1, y2, ..., ym)

P (x1, x2, ..., xn)P (y1, y2, ..., ym)

(3)

3.2. How to take advantage from multivariate mutual information

in order to learn phrase translation?

Multivariate mutual information calculates the correlation between respectively n

and m variables. This concept is very interesting since we propose to take advantage

from this principle by associating n words in a source language to m words in

a target language. The objective as in Ref. 17 is to use the principle of inter-

lingual triggers except that we use a multivariate mutual information. As illustrative

example, guess that we are interested by phrase of length 3 which are translated

by two words. For instance, in French “le petit déjeuner” is translated by “the

breakfast” in English. We can calculate directly the correlation degree between two

linguistics units as follows:

MMI(v, w, x, y, z) = P (v, w, x, y, z) log
P (v, w, x, y, z)

P (v, w, x)P (y, z)
(4)
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With v = “le”, w = “petit”, x = “déjeuner”, y = “the” and z = “breakfast”.

4. A new algorithm for training phrases

One of the famous algorithm allowing to develop a phrase based model (see Ref.

6) is based on splitting the source language on several segments and each segment

is then translated. Segments correspond to what are called phrases, they are those

which are consistent with the word alignment. Words are aligned bidirectionally

and the phrases are those with a high union recall alignment. A reordering model is

trained using a joint probability which has the role to put in order the phrases of the

target language. A reordering model is trained using a joint probability which has

the role to put in order phrases of the target language. Consequently, at least the

following parameters are necessary to develop a phrase based model: a bidirectional

phrase translation probability and a bidirectional lexical translation probability.

In this work, we start by identifying the longest phrases with thier translations and

then the less longest and we finish with phrases of two words. This is motivated

by the fact that we would like to appreciate the real contribution of each segment

without the influence of its sub-segments. In fact, a long segment is linguistically

more informative than a shorter one included into it. The algorithm we propose in

the following is based on retrieving phrases and their translations by using multi-

variate mutual information without any alignment. Firstly, this algorithm provides

a many-to-many translation table, and MMI permits to find phrases like x1, x2,

..., xm −→ y1, y2, ..., yn, such as m and n are respectively the maximal length of

source and target phrases. suppose that an English phrase is in general longer than

the French one. This is not true in all the cases but in most cases this hypothesis

is true. By iterating the different steps of Algorithm 1, we get a list of phrases and

their translations.

Algorithm 1 A phrase model based on multivariate mutual information

1: for i = lenMax to 2 do

2: Extract the ni best phrases (most frequent) from the french corpus F

3: Extract the ni best phrases (most frequent) from the english corpus E

4: end for

5: for i = lenMax to 2 do

6: MMI(f1, ..., fi, a1, ..., ai) = P(f1, ..., fi, a1, ..., ai) log P (f1,...,fi,a1,...,ai)
P (f1,...,fi)P (a1,...,ai)

7: end for

5. Estimate probabilities for phrase pairs

Translation probabilities reflect the probability that a sequence of words in a source

language translates into sequence of words in a target language. We use the principle

proposed in Ref. 15 to compute phrase translation probabilities.
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Table 1. Examples of retrieved phrases
and their translations

French English MMI Prob

autour de around 0.0054 0.276

around the 0.0022 0.122

a été prise was taken 0.001 0.212

been taken 0.00037 0.074

taken 0.00034 0.068

semaine last week 0.016 0.194

dernière week 0.0095 0.16

last 0.009 0.158

Table 2. An overview of the experimen-
tal material

Corpus Sentences English French

words words

Train 596831 15138093 16613485

Dev 1444 14077 13776

Test 500 1153 1352

In our algorithm phrases and their translations are obtained by selecting those

which have the best values of multivariate mutual information. In order to build, a

translation table which can be processed by Moses, we have to transform each MMI

into a probability. For that, we proceed as in Ref. 16

∀f, ei ∈ Trig(f)P (ei|f) =
MMI(ei, f)∑

ei∈Trig(f) MMI(ei, f)
(5)

Where Trig(f) is the set of k English segments triggered by the French phrases f.

Table I illustrates retrieved phrases by our algorithm. The first column presents

French phrases. For each French phrase, best corresponding translations are pre-

sented in column 2. The third column indicates the value of MMI assigned to the

translation proposed in the second column. In the same way, the fourth column

indicates the probability. A qualitative analysis showed that our method leads to

pertinent inter-lingual triggers. Thus, triggered sequences could often be consider-

ated as potential translation of the triggering French phrase. And finally the fourth

column shows the probability of the french phrase. It is calculated as we have shown

in equation 5.

6. Experiments

In this section we evaluate our phrase-based system based on Multivariate Mutual

Information. The experiments presented below have been conducted on the pro-

ceeding of the European Parliament (see Ref. 18). We used French-English parallel

corpus.

Table 2 gives details about the used the parallel corpus. We use a train corpus

to extract French phrases and to compute inter-lingual triggers (few examples are

given in table 1). A development corpus is used to select the best phrase translations

among all those determined by the set of inter-lingual triggers. Finally, we use a

test corpus to validate our approach.
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Table 3. Evaluation results on the Eu-

roparl corpora : French to English MT
task. The test corpus contains 500

aligned sentences

System BLEU

Baseline 44.3

MMI 43.79

Table 4. Evolution of BLEU in accor-
dance of phrases’s types

Set Selected Triggers BLEU

S1 1FR −→ 1EN 34.16

S2 S1 + 8FR 36.32

S3 S2 + 7FR 36.36

S4 S3 + 6FR 36.8

S5 S4 + 5FR 39.58

S6 S5 + 4FR 41.12

S7 S6 + 3FR 43

S8 S7 + 2FR 43.79

We compare the output of MOSES (see Ref. 19) using its default phrase table

(refined alignments from Giza++ (see Ref. 20)), against those produced by our

method. For the language model, we use a trigram for all the experiments. Results

are presented in table 3 ans 4 in terms of BLEU (see Ref. 21).

Table 3 shows the results obtained with our method are close to the baseline sys-

tem. Table 4 illustrates the evolution of BLEU in accordance to the size of phrases

introduced in translation table. The first conclusion is the one that proved several

years ago by the community that the introduction of phrases improve the results.

Results S1 corresponds to word-to-word translation and S8 corresponds to a trans-

lation using all the possible phrases. The improvement eceeds 9 points which is a

considerable achievement. Then what we can remark is that, the introduction of

phrases of 8,7 and 6 words improve the results with more than 2 points. This mean

that influence of long phrases is suitable but not as relevant as the introduction of

phrases of 5 words. These phrases bring more than 2.5 in terms of BLEU. But the

best improvement is brought by sequence of words of 4,3, and 2 words: more than

4.5! Consequently, all these sequences of different sizes are necessary to improve the

results. Phrases beyond of 8 words are not relevant.

7. Conclusion

The proposed approach in this work is based on the concept of multivariate mutual

information. This measure is used to determine directly many-to-many phrases. The

first positive result is that this approach allowed to find out valid linguistic phrases

and their corresponding translations.

The second advantage is that our method does not need word alignments. Tech-

nically we do not need to include any alignment variable in the calculation of the

translation probability. So, the translation probability is calculated directly through

the correlation between the source and the target corpora. The matching between

the source and the target segments is handled by associating the best target seg-

ment to a source segment. Consequently, the calculation of the translation table is
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faster than the baseline method and provides results less noisy.

The investigation we did to explain the difference between our method and the base-

line system is likely due to the non discriminative probabilities of our translations.

Indeed, the translation probability assigned to a pair of phrases is calculated by a

standard normalization of the multivariate mutual information, the consequence is

that the probabilities are close to each other and this does not allow a high discrim-

ination between partial translations in the decoding step. Work is under progress

to overcome this limit.
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