Invariance principles for self-similar set-indexed sums of dependent random fields - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2012

Invariance principles for self-similar set-indexed sums of dependent random fields

Résumé

For a stationary random field $(X_j)_{j\in\Z^d}$ and some measure m on $\R^d$, we consider the set-indexed weighted sum process $S_n(A)=\sum_{j\in\Z^d}m(nA\cap R_j)^\frac12 X_j$, where R_j is the unit cube with lower corner j. We establish a general invariance principle under a p-stability assumption on the X_j's and an entropy condition on the class of sets A. The limit processes are self-similar set-indexed Gaussian processes with continuous sample paths. Using Chentsov's type representations to choose appropriate measures m and particular sets A, we show that these limits can be Lévy (fractional) Brownian fields or (fractional) Brownian sheets.
Fichier principal
Vignette du fichier
BiermeDurieuPreprint.pdf (438 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00716437 , version 1 (10-07-2012)
hal-00716437 , version 2 (22-03-2013)

Identifiants

  • HAL Id : hal-00716437 , version 1

Citer

Hermine Biermé, Olivier Durieu. Invariance principles for self-similar set-indexed sums of dependent random fields. 2012. ⟨hal-00716437v1⟩
233 Consultations
205 Téléchargements

Partager

More