Adaptive warped kernel estimators - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2012

Adaptive warped kernel estimators

Gaëlle Chagny

Résumé

In this work, we develop a method of adaptive nonparametric estimation, based on "warped" kernels. The aim is to estimate a real-valued function $s$ from a sample of random couples $(X,Y)$. We deal with transformed data $(\Phi(X),Y)$, with $\Phi$ a one-to-one function, to build a collection of kernel estimators. The data-driven selection of the best bandwidth is done with a method inspired by Goldenshluger and Lepski~(2011). The method permits to handle various problems such as additive and multiplicative regression, conditional density estimation, hazard rate estimation based on randomly right censored data, and cumulative distribution function estimation from current-status data. The interest is threefold. First, the squared-bias/variance trade-off is automatically realized. Next, non-asymptotic risk bounds are derived. Last, the estimator is easily computed thanks to its simple expression: a short simulation study is presented.
Fichier principal
Vignette du fichier
WarpedKernelBHal.pdf (1013.96 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00715184 , version 1 (06-07-2012)
hal-00715184 , version 2 (22-01-2013)
hal-00715184 , version 3 (18-06-2013)
hal-00715184 , version 4 (31-01-2014)

Identifiants

  • HAL Id : hal-00715184 , version 2

Citer

Gaëlle Chagny. Adaptive warped kernel estimators. 2012. ⟨hal-00715184v2⟩
372 Consultations
475 Téléchargements

Partager

More