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ADAPTIVE WARPED KERNEL ESTIMATORS

GAELLE CHAGNY*A *

ABSTRACT. In this work, we develop a method of adaptive nonparametric estimation, based
on "warped" kernels. The aim is to estimate a real-valued function s from a sample of random
couples (X,Y). We deal with transformed data (®(X),Y), with ® a one-to-one function, to
build a collection of kernel estimators. The data-driven selection of the best bandwidth is done
with a method inspired by Goldenshluger and Lepski (2011). The method permits to handle
various problems such as additive and multiplicative regression, conditional density estimation,
hazard rate estimation based on randomly right censored data, and cumulative distribution
function estimation from current-status data. The interest is threefold. First, the squared-
bias/variance trade-off is automatically realized. Next, non-asymptotic risk bounds are derived.
Last, the estimator is easily computed thanks to its simple expression: a short simulation study
is presented.

Keywords: Adaptive estimator. Censored data. Bandwidth selection. Nonparametric estima-
tion. Regression. Warped kernel.

AMS Subject Classification 2010: 62G05; 62G08; 62N02.

1. INTRODUCTION

Let (X,Y) be a couple of real random variables, and (X;,Y;)i=1, . an é.i.d. sample drawn
as (X,Y). The main goal of nonparametric estimation is to recover an unknown function s,
linked with (X,Y’), such as the regression function, from the data. Among the huge variety of
methods that have been investigated, the use of transformed data (Fx(X;),Y;), with Fx the
cumulative distribution function (c.d.f.) of X, has received attention in the past decades. In this
context, both kernel and projection estimators have been studied in random design regression
estimation (Yang 1981, Stute 1984, Kerkyacharian and Picard 2004, Pham Ngoc 2009, Chagny
2011), conditional density or c.d.f estimation (Stute 1986, Mehra et al. 2000, Chagny 2012) or
for the white noise model (Chesneau 2007). However, to our knowledge, few papers focus on the
problem of adaptivity of such "warped estimators". The aim of the present work is twofold: first,
we want to show that a warping kernel device can be applied to various estimation problems,
including survival analysis models (see examples below). Secondly, we address the problem of
bandwidth selection, with the intention of providing an adaptive "warped" estimator, which
satisfies nonasymptotic risk bounds.

The basic idea, which motivates the study of warped kernel estimators introduced by Yang
(1981), can be first explained in the classical regression framework. Here, the target function is
the conditional expectation, s : z — E[Y|X = z] i.e.

1
(1) @) = 57 [ when (i
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2 ADAPTIVE WARPED KERNEL ESTIMATORS

when a density f(xy) for the couple (X,Y’) exists, and where fx is the marginal density of the
design X. Historical kernel methods were initiated by Nadaraya (1964) and Watson (1964). The
famous estimator named after them is built as the ratio of a kernel estimator of the product sfx
divided by a kernel estimator of the density fx:

1
AL N Elz;%l Yol — Xi)a
7 izt Kn(z — Xi)

where Ky, :  +— K(x/h)/h, for h > 0, and K : R — R such that [, K(x)dz = 1. Adaptive
estimation then requires the automatic selection of the bandwidth h, and the ratio form of the
estimate suggests that two such parameters should be selected: one for the numerator, and
one for the denominator. From the theoretical point of view, there is no reason to choose the
same. Nevertheless, nonasymptotic results such as oracle-inequality are difficult to derive for an
estimator defined with two different data-driven smoothing parameters. See Penskaya (1995) for
a thorough study of the ratio-form estimators. Moreover, when the design X is very irregular
(for example when a "hole" occurs in the data), a ratio may lead to instability (see Pham Ngoc
2009). The warped kernel estimators introduced by Yang (1981) and Stute (1984) avoid the

ratio-form. Indeed denote by F}, the empirical c.d.f. of the X;’s and let

N 1 . R
(2) Sh=— Z;YEKh (Fx(z) — Fx(X;)), or 8 = - z;YiKh (Fn(fﬂ) - Fn(Xi)) ;
1= 1=
depending on whether the c¢.d.f. Fx is known or not. The following equality (see Proposition 1)
holds:
E[YEK (u— Fx(X))] = Kpx (so Fy')(u),
where x is the convolution product and o is the composition symbol. Thus, the first estimator

of (2) can be viewed as 5, = so Fy 16 Fx. The main advantage is that its expression involves
one bandwidth A only.

In this paper, we generalize the warping strategy to various functional estimation problems:
as a first extension of (1), we propose to recover functions s of the form

1
(3) (@) = 5 / 0(y) oy (. y)dy.

for # : R — R, and ¢ : R — R;\{0}. In this case, the warping device brings into play the
transformation (®(X),Y) of the data, with ® = ¢. The form (3) covers the additive regression
model described above, by setting ® = Fx, and 6(y) = y. But it also permits to deal with the
simplified heteroskedastic model Y = /s(X)e, where ¢ is an unobserved noise. In this case,
® = Fy, and 0(y) = 2.

In several examples however, the couple (X,Y’) does not admit a density, but X admits a
marginal density. Then (3) can be extended and the target function s takes the form:

fx(x)
@) s(r) = S
This allows to handle two classical settings in survival analysis: the interval censoring case
1, and right censored data. In the interval censoring model, case 1, the target function is
s(z) =P(Z < x), where Z is a survival time, which is not observed, and we only know a current
status at the observed time X of examination. We also know Y = 1z<x, which indicates
whether Z occurs before X or not. We refer to Jewell and van der Laan (2004) for a review of
the estimation methods in this setting, and more recently to Ma and Kosorok (2006), Brunel
and Comte (2009) or Plancade (2011) for investigations including adaptivity. In right-censored

E[0(Y)|X = z].
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data, the function of interest at time x is the hazard rate function, that is the risk of death at
time z, given that the patient is alive until x. This model has been studied by Tanner and Wong
(1983), Miiller and Wang (1994) and Patil (1993), among all. Adaptive results are available for
projection-type estimators (see Brunel and Comte 2005, 2008, Reynaud-Bouret 2006 or Akakpo
and Durot 2010), but to our knowledge not for kernel estimators.

The paper is organized as follows. We present in Section 2 the estimation method, detail
the examples illustrating the relevance of the introduction of a general target function s defined
by (4). We also study the global risk of the warped kernel estimators with fixed bandwidth.
Section 3 is devoted to adaptive estimation: we define a data-driven choice of the bandwidth,
inspired by Goldenshluger and Lepski (2011) which allows to derive nonasymptotic results for
the adaptive estimators. Oracle-type inequalities are provided for the M.I.S.E., and convergence
rates are deduced under regularity assumptions. Sections 2 and 3 deal with the case of known
deformation ®. Section 4 discusses briefly the case of unknown @, for which details are given in
Appendix 1 (Section 7). In Section 5, the method is illustrated through numerical simulations.
Proofs are gathered in Section 6. Finally, a more general proof of the main result is given in
Appendix 2 (Section 8), under slightly different assumptions.

2. ESTIMATION METHOD

2.1. Warped kernel strategy. Consider a sample (X;,Y;)i=1, ., of i.i.d. random couples with
values in A x B, where A is an open interval of R and B a Borel subset of R. We assume that
X; has a marginal density fx and we aim at recovering a function s : A — R linked with the
distribution of (X;,Y;). To estimate s, we replace the explanatory variable X; by ®(X;), where
®: A — ®(A) C R is one-to-one and absolutely continuous. The data (®(X;),Y;)i=1,..n are
called the warped sample with deformation function ®. The sets A, B, ®(A) are supposed to be
given. The target function can be written as:

(5) s(x) =go ®(x) = g(P(x)), with g : ®(A) — R.

We first estimate the auxiliary function ¢ = s o ®~! with ®~! the inverse function of ®. In

the general case, ® is unknown and we must estimate it also. Let K be a function such that
Jg K (u)du =1 and set Kj, : u— K(u/h)/h, for h > 0. We define, for u € ®(A),

A RS .
(6) an(w) = = "6V Ky (u— (X)),
i=1
where 6 : R — R is a given function, d is an empirical counterpart for ®, and for z € A
(7) in(2) = Gy o Blz) = © f: 0(Y:) K, <<i>(x) - &(Xi)) .
i

Let us give examples covered by the above framework. They are sum up in Table 1, with the
corresponding estimators.

Example 1 (Additive random design regression): we observe (X;,Y;) with Y; = s(X;) +¢;,
(€i)i=1,..n is independent of (X;)i=1,. n, E[e7] < oo and E[g;] = 0. We choose ®(z) = Fx(z),
the cumulative distribution function (c.d.f. in the sequel) of X and assume that ® : A — ®(A)
is invertible.



4 ADAPTIVE WARPED KERNEL ESTIMATORS

Example S P Sp

LY = o(X) 1 ¢ . Py ! gnmwxm ~ Fe(X)

2Y = o(X)e o2 Py ! Z_z:;mch(FX(x) (X))

3 (X,1z<x) Fy Fx % ZE:; 1z,<x, Kn(Fx(2) — Fx(X;))
4(X=2ZNC1z<0) : fZFZ (x) = /Ox(1 — Fx(t))dt % E; 1z,<c, Kn(®(z) — 2(X3))

TABLE 1. Summary of the studied examples and of the "warping" function used
in each case.

Example 2 (Heteroskedastic model): Y; = o(X;)e;, (€i)i=1,..n independent of (X;)i=1,.. n,
Ele?] = 1, E[e;] = 0, ®(z) = Fx(z), with ® : A — ®(A) invertible. Here s(z) = o?(x) =
E[YV2|X; = z].

Example 3 (Interval censoring, Case 1): the observation is (X;,Y;) where Y; = 1z,<x;,,
Zi, X; > 0 are independent survival times, Y; indicates whether Z; occurs before X; or not and
Z; is not observed. The target function is s(x) = P(Z; < x) = E[Y;|X; = x]. We choose ® = Fx.

Example 4 (Hazard rate estimation from right censored-data): the observation is X; =
Zi NCy, Yy = 1z,<c,, where Z; and C; are not observed and independent, Z; > 0 is a lifetime
and C; > 0 is a censoring time. The function s of interest is the hazard rate function s(x) =
fz(x)/(1 — Fz(x)), where fz (resp. Fyz) is the density (resp. the c.d.f.) of Z. This function
satisfies

fx(x)

(8) s(x) = TX@)E[HX =z,

a relation which is proved in Section 6.1. In this case, we assume Fx(t) < 1 for all £ > 0, and
take ®(x) = [ (1 — Fx(t))dt.
The following equality is the cornerstone of the method and justifies the introduction of (6):

Proposition 1. Let (X,Y) be a random couple with values in Ax B C R%. Assume that X has a
density fx and let ® : A — ®(A) be a one-to-one absolutely continuous function. Let s : A — R
defined by (4) and g = so ®~1. Then, if § satisfies E|0(Y)Kp(u— ®(X)| < oo, for all u € ®(A),

(9) E [H(Y)Kh(u — (I)(X)] = Kh * (glq,(A)) (u) = gh(u),
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where x s the convolution product.

Equality (9) shows that gy, defined by (6) is an empirical version of g5 and thus §;, in (7) suits
well to estimate s.

Hereafter, for the sake of clarity, we assume that ® is known. In Section 4, we discuss the case
of an unknown deformation ®. The theoretical results are the same, up to further technicalities
due to the plug-in of an empirical version for ®.

2.2. Risk of the fixed bandwidth estimator. In this section, we study the global properties
of §, as an estimate of s on A, with a fixed bandwidth h. The quadratic risk weighted by the
derivative ¢ of the warping function ® is the natural criterion in our setting. Let us introduce,
for a measurable function ¢ on A,

(10) 14113 = /A 2 (2)é () dx,

and denote by L%(A, ¢) the space of functions ¢ for which the quantity (10) exists and is finite.
We also use the corresponding scalar product (.,.),. For t1,ts belonging to L*(4, ¢), we have

[t10 @[l = lt1llz2(@a)), (t10 @, t2 0 P)y = (t1,t2)0(a),
where Htlﬂig@m)) = f@(A) t3(x)dz and (., .)g(4) denotes the usual scalar product on L*(®(A)).
Therefore,
180 = sl = llgn — 9ll72(@(a))-
The following bias-variance decomposition of the risk holds:

Proposition 2. Let K belong to L?>(R). Assume that s belongs to L*>(A, ¢), and that E[#?(Y1)] <
oo. Then (recall that gy, is defined in (9)),

) 1
(11) E (13 — s3] < g = gnllz2q@ay + —E [*OD] 1K |2 q)-

If s is bounded on A, s € L?(A, ¢). This is the case for Examples 1-3, as ¢ = fx. In Example
4, we can check that s € L%(A,¢) for all classical distributions for C' and Z used in survival
analysis (such as exponential, Weibull, Gamma...).

3. ADAPTIVE ESTIMATION

3.1. Data-driven choice of the bandwidth. As usual, we must choose a bandwidth A which
realizes the best compromise between the squared-bias and the variance terms (see Proposition2).
Moreover, we need define a data-driven choice of the bandwidth. For this, we use a method
described in Goldenshluger and Lepski (2011). Let H, be a finite collection of bandwidths,
with cardinality depending on n and properties precised below (Assumptions (H2)-(H3)). We
introduce the auxiliary estimators, involving two kernels,

S (€)= gnw (®(x)) with  Gnp = K x (Gnlea)) -
For a constant x > 0 to be precised later on, we define, for h € H,,,

1

E-

(12) V(R) = r (14 1K1 m) ) 1K1 2mE [62(11)]
Next, we set

A A2
13) A(h) = o {JIsnw = swllg = V(RO},
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which is an estimation of the squared-bias term (see Lemma 4). Note that ||$p 5 — §th§5 =
|Gn.ne — Gn||*. Lastly, the adaptive estimator is defined in the following way:

(14) §=35; with h=arg qmin {A(h) + V(h)} .

The selected bandwidth / is data-driven. In V/(h), the expectation E[#2(Y})] can be replaced by
the corresponding empirical mean (see Brunel and Comte 2005, proof of Theorem 3.4 p.465). In
Examples 3-4, it can be replaced by 1, its upper-bound.

3.2. Results. We consider the following assumptions:

(H1) The function s is bounded. Denote by ||s||zec(4) its sup-norm.

1
(H2) There exist ap > 0 and a constant kg > 0 such that Z 7 < kon®o.
heH,

(H3) For all kg > 0, there exists Cy > 0, such that Z exp (—%) < ().
heHn
(H4) The kernel K is of order [, i.e. for all j € {1,...,1+4 1}, the function z — 2/ K(x) is
integrable, and for 1 < j </, fR 2 K (z)dz = 0.
Assumption (H1) is required to obtain Theorem 3 below. Nevertheless the value [|s[|fo0(4) is not
needed to compute the estimator (see (14)). This assumption holds in Example 3 (s < 1 in this
case), and in Example 4, for instance when Z has exponential or Gamma distribution. Assump-
tions (H2)-(H3) mean that the bandwidth collection should not be too large. For instance, the
following classical collections satisfy these assumptions:

(1) Hpp={k™' k=1,...,x(n)} with ap =2, x(n) =n or ag =1, x(n) = y/n.
(2) Hpo={27% k=1,...,[In(n)/In(2)]}, with ag = 1.
Assumption (H4) is required only to deduce convergence rate from the main nonasymptotic
result. We need a moment assumption linked with (H2):
(H5) With o given by (H2), there exists p > 2ap, such that E[|0(Y) — E[0(Y)|X]|**?] < .
If 6 is bounded, (H5) evidently holds. In Examples 1 and 2, (H5) is a moment assumption on the
noise which is usual in regression settings. Notice also that the smaller ag, the less restrictive

the integrability constraint p on the noise moments.
We prove the following oracle-type inequality:

Theorem 3. Assume (H1)-(H3) and (H5) for Examples 1-2. Then there exist two constants cy
and co, such that:

)

E [62(1)] || K125 g } ¢
+ —
nh

n

15 E{A— 2]< i — 52
(15 18— sl3] < ex pmin & s s +

with s, = g o ® and 8 defined by (14). The constant c1 depends only on ||K||p1(w)-

The constant cz depends on |[s|[ oo (a), [[K|[z1(r) and [|K||z2(r) in Examples 3-4, and also on the
moment of ¢ and E[s?(X7)] for Examples 1-2. The adaptive estimator § automatically makes

the squared-bias/variance compromise. The selected bandwidth h is performing as well as the
unknown oracle:

b= in E[||s — §3]|%].
arg yuin s — 1)

up to the multiplicative constant ¢; and up to a remainding term of order 1/n, which is negligible.
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The interest of Inequality (15) is that it is nonasymptotic. Moreover, contrary to usual kernel es-
timation results, Assumption (H4) is not needed. This is one of the advantages of the bandwidth
selection method.

To deduce convergence rates, smoothness classes must be defined to quantify the bias term.
Define the Holder class with order 8 > 0 and constant L > 0 by

H(B, L) = {t ‘R — R, t8) exists, Vo, 2’ € B, ‘t(w”($) — (8D (2

< Lz — o)1},
where 3] is the largest integer less than 5. We also need the Nikol’skii class of functions:
2
No(B, L) = {t ‘R — R, t) exists, Vo € R, / <t(w)(x/ + ) — t(mJ)(x/)> da’ < L2\x]2ﬁ_2lm}
R

We can now deduce from Theorem 3 the convergence rate of the risk, under regularity assump-
tions for the auxiliary function g.

Corollary 1. Let g = glgay on R. Assume that

e g belongs to the Holder class H((3, L), with g(0) = g(1) in Examples 1-3,
e g belongs to the Nikol’skii class N2(B3, L) in Example /.

Assume (H4) with | = |3|. Then, under the assumptions of Theorem 3,
(16) B [s - s|3] < on 2t

8—slly| <Cn ,
where C' is a constant which does not depend on n and (3.

In Examples 1-3, ®(A) = (0;1) and the Holder condition is enough. In Example 4, ®(A) = Ry
and we need the Nikol’skii condition. Both spaces are standard in kernel estimation, see e.g.
Tsybakov (2009) and Goldenshluger and Lepski (2011).

We recover the classical optimal rates in nonparametric estimation. Note however that our
regularity assumptions are set on g and not s, as long as we do not counsider specific warped
spaces defined in Kerkyacharian and Picard (2004).

4. THE GENERAL CASE OF UNKNOWN &

Up to now we have considered the case of a known "warping" function ®. This is also the
framework of e.g. Pham Ngoc (2009) or Chesneau (2007). It allows to derive the main result with
few assumptions and short proofs. To deal with the general case, we use a plug-in device. Let E,
be the empirical ¢.d.f. of X. We estimate ® by ®(z) = F),(z) for Examples 1-3, and by &(z) =

Iy (1 - Fn(t)) dt for Example 4. Now §j, is given by (6). To define h, we replace H§h7h’_§h’H%¢ by
Gn.n — gnr||> in A(R) (see (13)). Theorem 3 holds under stronger assumptions on the bandwidth

collection H,,. However the proof requires lengthy and cumbersome technicalities. To deal with
the difference ® — &, we use the deviation inequality of Dvoretzky et al. (1956): for any A > 0,

P (sup

zeR

with K an universal constant. Details are given in Chagny (2011, 2012) for regression and con-
ditional density estimation using warped bases, which require analogous arguments. Moreover,

a non adaptive bound for the risk is proved in the appendix, Section 7, as an example of the
required tools.

A

Fy(z) — FX(x)( > A) < Kexp (—2n)?)
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5. ILLUSTRATION

To illustrate the procedure, we focus only on two of the four examples: the additive regression
(Example 1), and the estimation of c.d.f. under interval censoring case I (Example 3). In each
case, we compare the warped kernel strategy, denoted by WK in this section, with another
adaptive method: a regression-type one, based on the minimization of a penalized least-squares
contrast. We denote it by LS.

5.1. Implementation of the warped-kernel estimators. The theoretical study allows the
choice of several kernels and bandwidth collections. For practical purpose, we consider the
Gaussian kernel, K : z — e~%/2/\/27, which satisfies Assumption (K7). It has the advantage
of having simple convolution-products:

(17) \V/h, h, > 0, Kh*Kh/ = K\/W

The experiment is conducted with the dyadic collection H,, 2 defined above. The larger collec-
tion H,,1 has also been tested: since it does not really improve the results but increases the
computation time, we only keep the other collection. Besides, the simulations are performed in
the case of unknown ®. Therefore in Examples 1 and 3, the estimator is

S e SOV, (Fale) — Fa(X0)
i=1

with £, the empirical ¢.d.f. of the X;’s. Then, the estimation procedure can be decomposed in
some steps:

e Simulate a data sample (X;,Y;), i =1,...,n, fitting Example 1 or 3.

e Compute V(h) and A(h) for each h € H,, 1. - For V(h): its computation require a value for
(see (12)). A lower bound for its theoretical value is provided by the proof: it is very pessimistic
due to rough upper-bounds (for the sake of clarity). A practical calibration is required, like
in most model selection devices. Since classical techniques such as the slope heuristic are not
currently well developed for the Goldenshluger-Lepki method, we adjust x on simulations, prior
to the comparison with the other estimates. We set x = 0.05 in Example 1, and x = 0.3 in
Example 3.

- For A(h): thanks to (17), the auxiliary estimates are easily computed: $pp = 8 jzg72. The
L?—norm is then approximated by a Riemann sum:

1 K

. . . . . . 2
13m0 = 803, = g — w12 o ) = 75 D (Gnt () = Gu (un))”
k=1
where K = 50, and (uy) are grid points evenly distributed across (0;1).
e Select h such that A(h) + V(h) is minimum.
e Compute 5j,.

5.2. Example 1: additive regression. We compare the warped kernel method (WK) with
the adaptive estimator studied in Baraud (2002). It is a projection estimator, developed in an
orthogonal basis of L?(A), and built with a penalized least-squares contrast. The experiment
is carried out with the Matlab toolbox FY3P, written by Yves Rozenholc, and available on his
web page http://www.math-info.univ-paris5.fr/ rozen/. A regular piecewise polynomial basis is
used, with degrees chosen in an adaptive way. Since the kernel we choose has only one vanishing
moment, the comparison is fair if we consider polynomials with degrees equal to or less than
1. We denote by LS1 the resulting estimator. However, as shown below, we will see that the
warped-kernel generally outperforms the least-square, even if we use polynomials with degree
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at most 2 (LS2). We also experiment the Fourier basis, but the results are not as good as the
polynomial basis for the least-squares estimator. Thus, we do not mention the values.

The procedure is applied for different regression functions, design and noise. We focus on the
three following regression functions

s1:x—z(z—1)(x —0.6)
59 1 o+ —exp(—200(z — 0.1)2) — exp(—200(z — 0.9)%) + 1
s3 : @+ cos(4mz) + exp(—a?)

The influence of the design is explored through four distributions:

® Ujg,q), the uniform distribution on the interval [0; 1],

e 7(4,0.08), the Gamma distribution, with parameters 4 and 0.08 (0.08 is the scale param-
eter),

e N(0.5,0.01), the Gaussian distribution with mean 0.5 and variance 0.01,

e BN a bimodal Gaussian distribution, with density = ~— c(exp(—200(z — 0.05)%) +
exp(—200(x — 0.95)?)) (c is a constant adjusted to obtain a density function).

We also test the sensibility of the method to the noise distribution: contrary to the underlying
design distribution, it does not seem to affect the results. Thus, we present the simulation for
a Gaussian centered noise, with variance o?. The value of ¢ is chosen in such a way that the
signal-to-noise ratio (the ratio of the variance of the signal Var(s(X;)) over the variance of the
noise Var(e1)) approximately equals 2.

Beams of estimators (WK, LS1, and LS2) are presented in Figures 1 and 2, with the generated
data-sets and the function to estimate. Precisely, Figure 1 shows a regular case, while Figure
2 depicts the case where a hole occurs in the design density: the estimator built with warped
kernel behaves still correctly, even if the data are very inhomogeneous.

A study of the risk is reported in Table 2, for the sample sizes n = 60,200,500 and 1000.
The MISE is obtained by averaging the following approximations of the ISE values, for j €
{1,...,J =200}, computed with J sample replications:

N

(5(zx) — s(zx))?,
=1

where § stands for one of the estimators, b is the quantile of order 95% of the X; and a is the
quantile of order 5%. The (xj)g=1,. n are the sample points falling in [a;b]. In 56% of the
examples, the risks of the warped-kernel estimator are smaller than the ones of the least-squares
estimator, in piecewise polynomials basis with degrees at most 2 (LS2). Besides, if we consider
the comparison with LS1, which is more fair as explained above, the WK estimators give better
results in 77% of the cases.

5.3. Example 3: Interval censoring, case 1. The same comparison is carried out for the
estimation of the c.d.f. under interval censoring. The adaptive least-squares estimate is provided
by Brunel and Comte (2009), and the same Matlab toolbox is used for its implementation: recall
that the target function can be seen as a regression function: s(z) = P(Z < z) = E[1lz<,|X = z].
Different models are considered for generating the data. The estimation set A is calibrated, such
that most of the data belong to this interval, as it is done in Brunel and Comte (2009). We
shorten "follows the distribution" by the symbol "~".

o M1: X ~ Ujp,y), and Z ~ Ujp,1, A = (0;1) (for instance, the target function is Fy : x —
x),
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sl R . v
- R — X
01 02 03 04 05 06 07 08 09 01 02 03 04 05 06 07 08 09

~ 01 02 03 04 05 06 07 08 09 701 02 03 04 05 06 07 08 09

(c) (d)

FIGURE 1. Estimation in Example 1, with true regression function sz, design distri-
bution v(4,0.08), and n = 1000. (a) points: data (X;,Y;);, thick line: true function
s3. (b)-(c)-(d) beams of 20 estimators built from i.i.d. sample (thin lines) versus true
function (thick line): warped kernel estimators (subplot (b)), least-squares estimator in
piecewise polynomial bases with degree at most 1 (subplot (c)) or 2 (subplot (d)).

e M2: X ~ Up,), and Z ~ x2(1) (Chi-squared distribution with 1 degree of freedom),

A=)
e M3: X ~ &£(1) (exponential distribution with mean 1), and Z ~ xa(1 ) A= (0 1.2),
e M4: X ~ (3(4,6) (Beta distribution of parameter (4,6)), Z ~ (5(4,8), A = (0;0.5),
o M5: X ~ (3(4,6), Z ~ £(10) (exponential distribution with mean 0.1), A = (0;0.5),
o M6: X ~ 7(4, 0.08), Z ~ £(10), A = (0,0.5),
o M7: X ~ £(0.1), Z ~~(4,3), A= (1;23).

The first two models, and the fourth, were also used by Brunel and Comte (2009). All these
models allow to investigate thoroughly the sensibility of the method to the distribution of the
examination time X, and to the range of the estimation interval.

Figure 3 shows the smoothness of warped-kernel estimates. We also explore the difference
between the estimators by computing the MISE for the different models. Table 3 reveals that
the warped-kernel estimates can advantageously be used as soon as the design X; has not a
uniform distribution: it always outperforms the least-squares estimators in these cases.

6. PROOFS
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(c) (d)

FIGURE 2. Estimation in Example 1, with true regression function so, design distribu-
tion BA, and n = 1000. (a) points: data (X;,Y;);, thick line: true function s. (b)-
(c)-(d) beams of 20 estimators built from i.i.d. sample (thin lines) versus true function
(thick line): warped kernel estimators (subplot (b)), least-squares estimator in piecewise
polynomial bases with degree at most 1 (subplot (c)) or 2 (subplot (d)).

09 4 —
08 f [//
07 f//V
7/
0 %
05 %
o 7

2 4 6 8 10 12 14 16 18 20 22

(a) (b) (c)

FIGURE 3. Estimation in Example 3, in model M7, and n = 1000. (a)-(b)-(c) beams
of 20 estimators built from ii.d. sample (thin lines) versus true function (thick line):
warped kernel estimators (subplot (a)), least-squares estimator in piecewise polynomial
bases with degree at most 1 (subplot (b)) or 2 (subplot (c)).

6.1. Proof of Equality (8). Equality (8) comes down to compute a conditional expectation:
precisely, we prove that
fz(x) 1 — Fx(x)

EYiX=a= fx(@) 1= Fz(z)
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s X o n =60 200 500 1000  Method

s1 U, v.0006 0.3719 0.1341 0.1957 0.2454 WK
0.3892 0.1293 0.0681 0.0446 LS2

~(4,0.08) 5.107°  0.0052 0.0033 0.0004 0.0003 WK
0.0097 0.004 0.0017 0.0012 LS2

N(0.5,0.01) 0.011 0.0049 0.0020 0.0008 0.0005 WK
0.0020 0.0012 0.0010 0.0008 LS2

BN 0.022 0.524  0.422 0.267 0.205 WK
0.166  0.054 0.038 0.029 LS2

s2 U 0.17 16.35  6.791 351 0.837 WK
33.212  2.058 0.691 0.407 LS2
~(4,0.08) 0.08 1.885  0.354 0.204 0.147 WK

4.047  0.801 0.552 0.429 LS2
N(0.5,0.01) 0.01 0.0619 0.0186 0.0079 0.0006 WK
0.0078 0.0014 0.0001 0.0001 LS2
BN 0.18 12.052  5.279 1.698 1.041 WK
52.668 11.009 5.817 1.215 LS2

s3 Upp.) 0.35 28.03 1055 4.63 2747 WK
125.055 45.298 12.607 5.713 LS1

31.073 7477 4199 3.319 LS2

~(4,0.08) 0.44 19.615 6.283 3.869 3.309 WK
41.261 13.34 4.808 3.727 LS1

23.213 5549 2.059 0.86 LS2

N(0.5,0.01) 0.44 6.341 2452 1.28 0.861 WK
10.453 3.961 2.098 1.078 LS1

3.753  1.386 1.028 0.644 LS2

BN 0.32 44.381 13.618 9.637 7.928 WK
182.525 58.787 24.229 12.317 LS1

66.663 30.377 8.521 4.574 LS2

TABLE 2. Values of MISE x1000 averaged over 200 samples, for the estimators of the
regression function (Example 1), built with the warped kernel method (WK) or the
least-squares methods, with piecewise polynomials of degree at most 1 or 2 (LS1 or LS2).

To do so, let H be a test function. Recall that X = Z AC, Y = 1z<¢, and denote by fz (resp.
fe) the density of Z (resp. C). We compute

EYH(X)] = E[lz<cH(Z)] = /R  Le<eH () f2(2) fo(e)dzde,
= /]R (1—Fo(2) H(2)fz(2)dz = fz(2) 1= Fx(2)

R, fx(2) 1= Fz(z)

H(z)fx(z)dz,
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Model X Z [ab] n=60 200 500 1000 Method
1 Uy Uy — [0;1] 241 1125 0975 0533 WK
0.63  0.111 0.056 0.024  LS2
2 U] x2(1)  [0;1] 1.558 0.804 0.57 0415 WK
1.602 044 0244 013  LS2
3 £(1) x2(1)  [0;1.2] 1285 0.614 0243 0247 WK
2.385  0.893 0.651 0.365 LS2
4 B(4,6)  B(4,8) [0;0.5] 0423 0236 0.09 0.094 WK
0449 0271 0.117 0.105  LS2
5 B(4,6)  £(10) [0;0.5] 0.388 0.229 0.119 0.103 WK
0467 0261 0.13 0095 LS2
6 v(4,0.08) £(10) [0;0.5] 0424 0.166 0.102 0.069 WK
0.698 0.286 0.162 0.095 LS2
7 £(0.1)  ~4(4,3) [1;23] 14955 5.145 3.973 2113 WK
19.825 11.797 9.738 5.898  LS2

TABLE 3. Values of MISE x100 averaged over 100 samples, for the estimators of the
c.d.f. from current status data (Example 3) built with the warped kernel method (WK)
or the least-squares methods, with piecewise polynomials of degree at most 1 or 2 (LS1

or LS2).

taking into account the equality 1 — Fx = (1 — Fz)(1 — F¢). Thus, we identify E[Y|X].

6.2. Proof of Proposition 1. We have:

EO(Y)Kn(u—2(X))] =

= /Khu—

We set v’ = ®(z), thus du’ = ¢(z)dx. Therefore,

EO(Y)Knp(u—2(X))] =

/ Kp(u—uE[OY)|X = ' (u)] fx (7
D(A)

[O(Y) | X] K (u — @(X))],

E0(Y)|X = 2] fx(x)dx

/ Kp(u—u')s o @ (u)du.
B(A)

du

(U)) m,

13
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6.3. Proof of Proposition 2. The following classical bias-variance decomposition holds:
Eflsn— s3] = llg— gnllZaeay + B [lon = nl3gocan]
¢ L2 (2(4)) h = JhliL2(@(4)) | »

since, thanks to (9), E[gn(u)] = gn(u). We bound the variance term as follows:

E [l — nlBeoiny] = E| [ (A)@h(u)—E[gh(u)])?du]: L, var o

and for each u € ®(A),
Var (gp(u)) = %Var O(Y)Kp, (u — ®(X1))) < %E [02(Y1) K} (u— ®(X1))] -

Therefore, by integrating with respect to u, we get

1

E | llgn = 9nllFe(wiay] < E 2] 1K 2o

6.4. Proof of Theorem 3. Let h € H,, be fixed. We start with the following decomposition
for the loss of the estimator s = §;:

. 2 A 2
85—3H¢ = th—QHLz@(A))v
2

IN

+ 31190 — 9l 72 (@(ay -

o A 2
3 Hg,; - ghﬁ‘ ) +3 thﬁ B gh‘ L2(®(A))

L2(®(A

The definitions of A(h) and A(h) enable us to write, using the definition of &,

2 2

< 3(am+v (R)) +3(a(h) +vm),
6 (A(h) +V/(h)

3 Hf/,; - ghﬁ‘ L2(3(A)) +3 thﬁ B gh‘ L2(3(A))

A

Besides, applying also Proposition 2, we obtain

E[6%(Y1)]|| K ||%.
(18)  E |5 - sll3] < 6E[AM)] +6v(h) + | (ELL 2@ 4 g - olagny

Therefore, the remainding part of the proof follows from the lemma hereafter.

Lemma 4. Let h € H, be fized. Under the assumptions of Theorem 3, there exist constants
C1,Cy such that,

C
(19) E[A(R)] < Cillgn — 01200 + =

where the constant Cy only depends on || K||p1(w)-

Applying Inequality (19) in (18) implies (15) by taking the infimum over h € H,,. This ends
the proof of Theorem 3.

d
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6.5. Proof of Lemma 4. To study A(h), we introduce the auxiliary quantities gy p» 1= Kp *
(gh1q>(A)) = Kp * ((Kp *gl<p(A))1<p(A)), for any h' € H,,, and we first split

20)  lsnw = dwlh = lgnw — awlBaeay <3 (Ta+To+ g — o laiay )
where

To = 9nn — gnal2oay: To = lgnnw — gw 12 (a(ay)-
The first term can be bounded as follows, using Lemma 8, with p =2, ¢ =1, and r = 2:

To < | Knx (Gnlac) — o lo) | o -
< KN Z1 gy 190 Loca) — gnla(a) H;(R = K171 ey N — gm 1 22 (@ ay) -
In the same way, Tp < ”Khl”%l(R)th gHLQ 4))- Therefore, Decomposition (20) becomes:
13m0 = 8wllFe < BIEIZ@ylg = gnllZ2@eay + 3+ 1K 171 @) 10 — gwll72((ay) -
Now, we get back to the definition of A(h) given by (13):
(21)  A(h) <3 |IK|7mylle — 9nl72@ay)

V(R)
+3(1 + ”KH%A(]R)) hnéax (th’ gh’”%ﬂ(cb(A)) (1 n ”KHLI(R )) :
+

We apply Lemma 7: [|gn — gl z2@(a)) = SuDres(o,1)(Gn — 9> Do), with S(0,1) a dense
countable subset of S(0,1) = {t € L'(®(A)) N L?(®(A)), 1]l z2(@(a)) = 1}. Now,

O — g thagsy = Z / Vi) K (1 — B(X;)) — E[0(Y) Ky (u — B(X:))]} t(u)du

- Vn,h’(t)7

where v, s is an empirical process. Thus, thanks to (21), it remains to bound the deviations of
SUPte§(0,1) v2,,(t). First, we have

max | sup v2,,(t) — Vi)
WeHn \ 15(0,1) i 3(1+|’KH%1(R)) 4

V(h')

2

sup v, i (t) — .
<tes:<o,1> 05y |rKH%1<R>>>J

Then, the conclusion results from the following lemma:

E

<) E
hEHR

Lemma 5. Under the assumptions of Theorem 3, there exists a constant C such that,

S E ( sup zﬂh(t)—V(h)) ]gg,
t€S(0,1) + n

heH
with V(h) = 8| K|l 2m)E[0(Y1)?]/(nh) for a numerical &' > 0.

We choose the constant & involved in the definition of V such that V (k) < V(h)(1—|—||K||2L1(R))/3.
Thus, the proof is complete.
(]
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6.6. Proof of Lemma 5. We write the empirical process
1 n
(22) van(t) = =) n(Xi, Vi) — B[ n (X5, Vi),
i
with wt,h(X’iy Y;) = H(YZ) / K (u — Fx(XZ)) t(u)du
(A)

The guiding idea is to apply Talagrand’s Inequality (Lemma 6). If 6 is bounded, this inequality
can be applied. Otherwise, we have to introduce a truncation.

6.6.1. Ezample 1. Recall that ® = F'x and ®(A) = [0;1]. We split the process v, ;, into three
parts, writing v, j, = ne 2L + 1/( Y4 l/(2h2), with, for [ =1,(2,1),(2,2),

! 1 - 1 l
Vr(L)h = Z SDE}L(Zi) -E [@E%(Zi)] ,
i—1
Z; = X; or (Xj,&;), and

cpglfz sz — s(w) fol Kp(u— Fx(2))t(u)du,
P i (@.6) = el fo Knlu— Fx(@)tw)du
cpg?,’f) D (w,e) = elgsp, fol Kp(u— Fx(z))t(u)du,
where we define, for a constant ¢ which will be specified below,
(23) Kp = ¢ vn .
In(n)

We apply Talagrand’s Inequality to the first two bounded empirical processes, and bound roughly
the last one. Thus, we split:

su 1/2 —V su "o z Vl(h)

<tes<g 1) +0 V(h)) J : 3%;" {E [(tGS(§1)< "’h(t)) 3 >+]
su V(Q’l) ’ — —%(h)

<te§(g),1)< a0) -7 )J

swp (v <t>)2] } ,

teS(0,1)

(24) Y E
heHn

+E

+E

with the decomposition V (k) = V;(h) + Va(h), and, denoting by 8" = /2,

IK |2 E [s2(X0)] K2 E €3]
h N and Vg(h) =30 T

Actually, recall that we have E[0%(Y7)] = E[Y{] = E[s?(X1)] + E[¢?] here.

We now show that each of the three terms of the right hand-side of (24) is upper-bounded by
a quantity of order 1/n. This will end the proof.

o First term of (24).

Let us begin with VT(LI})L

Vi(h) = 36"

. To do so, we compute H®, M) and vV involved in Lemma 6.
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e For MW let t € S(0,1) and 2 € A be fixed:

1
@] < Is@) / [t~ Fx (2))t(u)] du < [s() | Enll 2 1] 2o
1K M| 22 () - 1K 1| 2 () :

S|l 1,00 :M(l)
T L < sl ooy T

= [s(@)]

e For HM notice that

n

. s 1
V) = {dh = g Doy, with dn = = 3 s(X) K, (- = Fx (X))
i=1
Thus, thanks to Lemma 7, we obtain,

an (h0)'| - 2]

t€S5(0,1)

E

2
gh‘ L?([o;u)] ’

= /01 Var <Jh(u)) du, since gp(u) = E [CZh(U)] )

IA

1
/0 LB [2(0) K7 (u — Fx(X1))] du.

n

Then, we use the same computation as the one done to bound the variance term in the
proof of Proposition 2, and set (H1))? = HK”Lz(R E[s?(X1)]/(nh).

e For v(1) we also fix t € 5(0,1). Hereafter, we set Kj,(u) = Kj(—u). First,

(/01 Kp(u— FX(Xl))t(u)du> 2] ,

1 2
(/0 Kh(u_FX(Xl))t(u)dU>] = E{(Kh*(tl[o;l]))z(FX(Xl))],

2
Var (v000)) < 2| (000)] < hlEeu

and the expectation can be written

1
= [ Fn (1100)* i < [ (120 e

IN

~ 2 o 2
1 2y L1050 2y = Rl gy 122 oy
thanks to Lemma 8. Therefore,

1
Var (6(01)) < sl 121y 1= 0.

Then, Lemma 6 gives, for 6 > 0,

#| i, Gt e (o)) [ Lo ()« e o)

where ki, ko, k3 are three constants which depend on E[s?(X1)], 8]l oo 4y, 1K |1 () and [| K || 2 (w)
Assumptions (H2)-(H3) lead to

£ (sup (vfi%(t))z—2(1+26>||K||%2(R>E[s2<xl>]n—1h> ]
;

he€Hn

IN
31Q

t€S(0,1)

with C a constant (which also depends on the previous quantities).
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e Second term of (24).
For the second empirical process 1/7(12,’11), the sketch of the proof is the same: similarly, we

compute the quantities involved in the Talagrand Inequality,
1 12 1
)ﬁ = || K| 2w (E[€7]) / Ve v® = | K71 g El]],

and we obtain, by Lemma 6, for § > 0,

2 2 1 1 K2 Vn
E sup fo’l)(t) —2(1+420) (H® <k {— exp (—kg—) — exp (—k3—> } ;

where ki, k2, k3 are three constants which depend on E[e?], || K|| p(r) and [|K||z2g). The first
term of the right hand-side is like above. With the definition (23) of x,,, the sum over h € H,, of
the second term of the upper bound can be written

K2 Vn
D o e <"“3§> = R Z 3
heH,

Consequently, using Assumptions (H2)-(H3) and choosing ¢ in the definition of k, such that
¢ < ks/ag, we also obtain for a constant C,

M® = "anK”m(R

>

2,1 2 1 C
> E ( sup (Vr(z,h)(t)> _2(1+25)”KH%2(R)E[€%]E) ] s
heH,, t€5(0,1) n
e Third term of (24).
The last empirical process is V( fo u)du, with

1 n
Y(u) = - Zgi1{|ei\>nn}Kh (u— Fx(X3)) — E [l e, >0 Kn (u — Fx(X3))] -
=1

It is not bounded. Nevertheless, we use the Cauchy-Schwarz Inequality, and the equality
1t 2(@(ay = 1, for t € S(0,1)

sup (vfff%t)f] < E[ / 1w2<u>du],

t€5(0,1)

E

1 1
< EE[€%1{51>M}]E[/O Kﬁ(u—Fx(Xﬂ)du],

||K||%2(R) 9 ||K||%2(R)“T_Lp 2t
< B[] < TR A7

Thus, there exists a constant k; which depends on |[K||z2(g) and E[e] 24

2 Ko 1 _, InP(n) 1
Z E | sup fof)(t) ] < ki— Z — =k P——= —.
heH LeS(O,l) < 7 ) " her, h ni+p/2 heHn h

The conclusion comes from Assumptions (H2)-(H3), and the choice of p > 2ay.
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6.6.2. Ezamples 2-4. For the multiplicative regression model (Example 2), we split the process
: : _ M @
into two terms: v, = v, ; +v, ", with

n

v () = EZ{ (Xo)e; 1{az|<nn}/ K (u — Fx (X)) t(u)du

1=1
—E[ 2(X )6 1{|51‘<Hn} fO Kh U—FX du }
1 n
van(t) = ;Z{ H(Xo)e 1{a,|>nn}/ Ky (u — Fx (X)) t(u)du
1=1
—E|: 2(X )E 1{|El‘>ﬁn} fO Kh u—FX du }

where x,, is still a constant for the proof, which equals Mc% and ¢ > 0 is obtained by the
computations, like in Example 1. We exactly recover the framework of this previous example:

1)

the deviations of the process v, ; are bounded thanks to Talagrand’s Inequality of Lemma 6,

(2,2)

and the second one is bounded in the same way as the process v, of the additive regression
setting.

For Examples 3-4, there is no point in splitting the process (22), since it is already bounded
(recall that 6(Y7) is bounded by 1). Thus, we apply the concentration inequality.

Recall that ®(A) = R,. In both of these cases, the quantity M; involved in the assumptions
of Lemma 6 equals My = ||K||L2(R)/\/E. Moreover, H? can be chosen as the upper-bound of the
variance term of the estimator gy, that is H* = |K||;2(g)/nh. Finally, v equals ||K|| 1) for
Example 3, and ||g|| oo (r )| K[| L1(r) for Example 4.

As an example, let us detail the computation of v in Example 4. Recall that X = C A Z,
Y = 1z<c, s is the hazard rate, and the warping ® is the function z — [;(1 — Fx(t))dt.
Thus, denoting by fo (respectively fz) a density of the variable C' (respectively Z), and F¢
(respectively Fz) its c.d.f.,

Var (Yea(X1,Y1)) € E|(a(X1,11))°] =E

2
Vi ( . Kp(u' — ‘I’(Xl))t(u/)du/> ] :
= /RMR l.<c < o Kp(u' — ‘I’(Z))t(ul)dul>2 fe(e) fz(2)dzde,

_ /R + ( [l - @(z))t(u')du'>2 F2(2) (1= Fo) (2)dz.

We set z = ®~1(u). The integral becomes

/R+ ( . Kp(u' — <I>(z))t(u’)du’>2fz(z) (1— Fe) (2)dz

/ N, ? -1 1 du
/R+ ( . Kp(u' —u)t(u )du) fz0® (u)(1—Fg)o® (u)((1 ~ )0 5 T(w))"
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Thanks to the same arguments as the ones used to prove Proposition 1 in Section 6.2, we obtain:
2
Var (¢pn(X1,Y1)) < / g(u) < Ky (u' — u)t(u')du') du,
Ry R

= [ o) (8 (1) ()7 < D) [ (1) e

<

R) H(t1R+)HL2(R) = |’9HL°°(R+) HKHU(R) = .

Once we have the three quantities, we easily apply Lemma 6 and the proof is complete by using
Assumptions (H2)-(H3), like above (see the computations in Example 1).

O

6.7. Proof of Corollary 1. We must bound the bias term of the right hand-side of Inequality
(15) (Theorem 3). Actually, if we prove that

Is = sull < Ch?P,

where C is a constant, then the proof of the Corollary will be completed by computing the
minimum which is involved in (15). By definition,

I = sully = g = nlExcacay = [ (o) — glu))*du
a(A)

We distinguish two cases in the sequel, depending on the considered examples.
Then we distinguish two cases:

6.7.1. Ezamples 1-3. Here, ®(A) = (0;1). We start with the definition of gj: for u € ®(A),

u

i) = 1 / i (U o = [ ot - )y

h

_ /u_l (i — h2) K (2)dz = /R G — ha)K (2)dz.

h

Thus, since [ K (u)du =

(25) gn(u) —g(u) = / K(z)g(u — hz)dz — / K(z)[g(u— hz) — g(u)] d=.

We use a Taylor-Lagrange formula for g: for u € (0;1), and z € R, there exists 6 € (0;1) such
that

—hz)? —hz)-1
( ;l') §”(u) e ((lh_)l)! g(l—l)

with [ = |3]. With Assumption (K7), we obtain

2
s — sl < (/Z€R|K<z>|'h;'l { /;O{g%—ehz)—§<”<u>}2du}1/2dz> .

Since g belongs to the Holder space H (S, L),

(u) + (_hz)lg(l)(u — 6hz),

(u— hz) - glu) = ~hzg () + .

1/2

! 2 1 1/2
[ / . {é(‘) (u—6hz) — Ez(l’(u)} du] < [ / . L2(9hu)2(ﬁ_l)du} ,
= Llhz",
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which enables us to conclude.
O

6.7.2. Ezample 4. Here, ®(A) = Ry. Similarly, we first obtain Equality (25). Then, the idea is
the same as in Examples 1-3, but since we integrate over an unbounded subset, we choose an
integrated remainding term in the Taylor formula:

5 5 = —hz)? o —h2)mt
u—he) =30 = —heg'() + S w e+ g
l 1
T ((z__h?)! /0 (1 —0)gV (u — Ohz)dd.

The reasoning is then the same as in density estimation (see Tsybakov 2009 for details).
(]

6.8. Useful tools. We recall classical results. The first one is a powerful concentration inequal-
ity, which permits to control the deviations of the supremum of an empirical process.

Lemma 6. [Talagrand’s Inequality] Let &y, . .., &, be i.i.d. random variables, and define v, (r) =
LS (&) —Er(&)], forr belonging to a countable class R of real-valued measurable functions.
Then, for § > 0, there exist three constants ¢;, | =1,2,3, such that

E [<§27g(un (r)? — c(é)H2>J < @ {%exp (_6251@7H2>

T (~acovats )}

with, C(0) = (V1+ 0 —1) A1, ¢(d) = 2(1 +20) and
sup ||r||ec < My, E [sup ’Vn(T)‘:| < H, and sup Var(r (&)) < v.
reR reR rerR

Inequality (6) is a classical consequence of the Talagrand Inequality given in Klein and Rio
(2005): see for example Lemma 5 (page 812) in Lacour (2008).

Then, we state a lemma which will allow us to replace a L?—norm by the supremum of an
empirical process.

Lemma 7. Let B be a borelian subset of R. Denote by Sp(0,1) the set of functions t € L'(B)N
L*(B) such that |[t|| 25y = 1. Then, for any function v € L'(B) N L*(B),

[vllzes)y = sup (v, t)5.
teSp(0,1)

Moreover, the supremum over SB(O, 1) equals the supremum over a countable subset Sg(0,1) of
SB(0,1).
Proof of Lemma 7. The Cauchy-Schwarz Inequality leads to

sup (v,t)p < sup  |ollpzm)lltl2sy = [[vllLem)-
teSp(0,1) teSgp(0,1)
Besides, if we set t = v/||v[|12(p), then t belongs to S5(0,1), and (t,v)p = vl z2(B)- This ends
the proof of the equality. Finally, we can replace S 5(0,1) by one of its dense countable subset:
such a set exists thanks to the separability of L?(R).
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Finally, we recall a useful and standard property of the convolution product.

Lemma 8. [Young Inequality] Let p,q € [1;00] such that 1/p+1/q > 1. If u € LP(R) and
v € LY(R), then the convolution product uxv exists. Moreover, ifr is defined by 1/r = 1/p+1/q—1
then uxv € L"(R) and

|u* vl Lr@®) < [Jullr@) vl Lar)-

7. APPENDIX 1: ADDITIONAL MATERIALS AND RESULTS FOR THE GENERAL CASE OF
UNKNOWN ¢

In this section, we give some details about the general case of an unknown transformation .

7.1. Notations. For the sake of clarity, we begin with an overview of the notations. The warping
functions ® and their estimator ®,, are defined in Table 4, for x € A, with F, is the empirical
counterpart for F'x. But instead of estimating F'x with the Whole sample (Xi)i=1,....n, We assume
that another sample (X_;)i=1, .. », independent of the X;’s, but distributed like them, is available.

Thus, we set
R 1 &
Fp:z — ;Z;lxi<:c'
=

The introduction of the second sample of variable X is an artefact of the theory: it only allows
to avoid dependency problems in the proof of the results, which are technical and cumbersome
enough (see below). Using a single sample would have required totally different statistic and
probabilistic tools. However, we have obviously used only one sample to compute the estimator
in the simulation study, see Section 5 (otherwise the comparison with other methods would not
have been fair).

®(z) Py ()

Examples 1-3 Fx(x) F,(z)

Example 4 /Ox (1— Fx(t))dt /Ox (1 - Fn(t)) dt

TABLE 4. The warping functions and their estimators

Let us now recall the following definitions of the estimators we will studied in this section: for
h >0,

N 1<~y .
(26) o0&y, with g 1 u — EZZ;e(Y,)Kh <u— @n(XZ)>.

»>
=

We aim at providing an upper bound for the risk of this estimator. The main challenge of
the plug-in device is to bound the difference ®,, — ®, in order to come down to the risk of the
estimator with known @, bounded in Proposition 2.
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7.2. Properties of ® and ®,,. We introduce in this section properties and deviation inequalities
which will be repeatedly used in the proof of Proposition 11.

First, we set U; = Fx(X_;), for i € {1,...,n} and denote by U, the empirical c.d.f related to
the sample (U;)1<i<n. Recall first that U; has a uniform distribution on the interval (0; 1) and that

F, 0 Fy' = U,. The variable sup,cg |Uy (u) — ‘ which will be denoted by ||U,, — id|| Lo (r), has

the same distribution as sup,¢ 4 ‘Fn(x) — Fx (x)‘ = ||F, — Fx||poe(r). The following deviation
result is known as the Dvoretzky-Kiefer-Wolfowitz Inequality (see Dvoretzky et al. (1956)):

Proposition 9. There exists a constant C > 0, such that, for any integer n > 1, and all X > 0,
P (HUn — id| oo m) > )\> < Cexp (—2n)2) .
By integration, we deduce the following bounds:

Corollary 2. For any p € N\{0}, there exists a constant C, > 0 such that
E[ O —id| ] <%
L>(R)

np/2
Proposition 9 and Corollary 2 are sufficient to handle the case & = Fy, d, =F, (Examples
1-3). In Example 4, recall that the deformation is ®(x) = [(1 — Fx(t))dt. Before studying
the deviations of its empirical counterpart, we first state the following equalities, which will be
useful, even though simple:

Lemma 10. Denote by ®(z) = [/ (1 — Fx(t))dt, 2 € (0;B), and ® = ¢. The function ®
satisfies
B
W) 9@) = [ wAD)Ixwdy. € (0:)
= Jy ¢(a)dx

Proof of Lemma 10
(1) Fix z € (0; B), and compute

o) = [exs = [ [ 1)
= [ ) ([ 1ot} = [ " ) A2 dy.

(2) To recover the expectation of X, we compute

/OB¢(x)dx _ /OB(l—FX( d:r—/ (/ Fxlt dt)d:r

_ /OOO () /0 Lo dadt = /0 Fx(t)tdt = E[X).
O

Now, consider the estimator ®,, = fox(l—Fn(t))dt. It can also be written &, (z) = LS XA
2. Thus it has no bias for the estimation of ® (see the first point of Lemma 10). Moreover, as-
suming that A = (0; B) with finite B > 0 (still in Example 4) permits to write,

(27) sup ‘@ — Pz )‘ < B sup |E,(z) — Fx(x)].
z€(0;B) zeRL
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Thus, Proposition 9 and Corollary 2 are also useful to bound $, — ® in Example 4.
To standardize the notations in the proofs below, we finally set B = 1 when & = Fx and
d,, = F,, that is in Examples 1-3. Therefore, Inequality (27) holds whatever ® is.

7.3. Result. Before stating the result, we introduce new assumptions:

(H1’) the function s is continuously derivable on A.

(H2’) the kernel K is twice continuously derivable, with bounded derivatives K’ and K" on R.
Assumption (H1’) is somehow restrictive but required for integration by parts (see Section 7.4.3).
Assumption (H2’) permits to use Taylor formulas to deal with the difference Kj(u — ®,(X;)) —
Kp(u— ®(X;)). This is not a problem as we choose the kernel.

We now illustrate how the plug-in device suits well to recover the function s by providing an
upper bound for the risk of 5.

Proposition 11. Assume (H1’) and (H2’). Assume also that A = (0; B) with B < oo for
Ezxample 4. Then, there exist three constants ¢y, co and c3 such that

1 1 1
. 2 2
(28) E [Hsh - 3”4 <519 = gnllz2@(ay + s + €2 577 + €3 576"
If moreover h > n='/4 there exists ¢ > 0 such that
. 1
(29) E {l13n = s12] < 51l = gnllZ2a(ay + -

Notice that the additional assumption A = (0; B) with B < oo is needed to control the
difference ®,, — ® in Example 4 (see Section above). Inequality (29) is immediatly deduced from
(28) with the additional assumption h > n~'/4. It shows that the same result as Proposition
2 holds when the warping function ® is unknown, under mild assumptions. The main adaptive
result (Theorem 3) in this general framework can then be deduced from this bound.

7.4. Proof of Proposition 11.

7.4.1. Main part of the proof of Proposition 11. Let us specify the notations of this section. Our
goal is to study the risk of § defined by (26): we denote it by §®0®n We have

R Y SRS A

Moreover, §%® = g% o ® with gF (u) = (1/n) > 1 H(Y-)Kh(u — ®(Xj;)) is the estimator studied

q>n7

in the main part of the paper. Coherently, we also introduce § = g;fn o ®. The following

decomposition is the key of the proof:

3
I3n = sl <51,
=0
with )
D, D 2
7 = an® = s + [ = sl
2 2
;@ _ 0.0 by, d DD
T = (et -t B[ -t )|
7 = || - §in,<1> _E [ggmn — g3 |(X—i):| H
2

T = ||B [ - st (x| (‘¢,

2

¢
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where E[Z|(X_;)] is the conditional expectation of a variable Z given the sample (X_;)i=1, . n.
The term Toh has been bounded in Proposition 2. For the three others, we set the following
lemmas, which end the proof.

Lemma 12. Under the assumptions of Proposition 11,
1
E|7"] < riE [02(V0)] 1K [l ) Comyry,
with k1 = 1 in Examples 1-3, k1 = B?E[X] in Ezample 4, and Cy defined by Proposition 2.

Lemma 13. Under the assumptions of Proposition 11,

h K 2 12 1
B[] < —+160E [2(0)] | K"} gp) Cimyors.
with k1 = B’E[X] and

2
12[|K |22 g (202|ys|yioo(A) +2| 5]l + (% +3Cy) Hs’HLz(A>) (Examples 1-3),
f= UKy (sl () (EIX2,) 4 2C2B2)
1512 4y (BIX2,] + CoB2) + BIX ][15]22) ) (Brample 4).

Remark 1. To prove Lemma 12, Assumption (H1’) is not required and Assumption (H2’) can

be weakened: it is sufficient to assume that the kernel K is continuously derivable, with bounded
derivative K.

O

7.4.2. Proof of Lemma 12. The first term to bound is
. R 2
T = /A (7" 0 (@) = 41 0 @(2) —E |37 0 () — g 0 B(2) (X)) ol)da,
and its conditional expectation is

B [110x-0] = [ Var (38 (@(@) ~ i @) [(X-0) ) éle)da.

For any x € A, we compute

Var (g;f’n(cb(a:)) — g (®()) !(X—i)>

~ Var (% f 0(vi) { K (@) = (X)) = Ko (0(2) -~ @(X)) | !(X_i)> :

= %Vaf (H(Yl) {Kh <‘I>($) - (I)n(Xl)> — Kp (®(z) — (I)(Xl))} \(X—z')> ;

< —E 92<Y1){K (M) ‘K<w>} [(X=)

The mean value theorem for the kernel K between to real numbers a and b leads to:

[K(b) — K(a)| < [|E'|[ ooy |b — al.

By choosing a = (®(z) — ®,,(X1))/h and b = (®(x) — ®(X1))/h, we obtain
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{‘I’(Xi) - (i)n(Xi)}Z

< o |PODIE ey B (&=
1 . 2
< WHK/H%‘X’(R) ‘ O — <1>HL<><>(A) [92(5/1) (X )] )
= K ey || €0 62(v1)]
Thus,
BT 1(X-0] < 7 [ ol)dal K ey E[701)],
and consequently
B[] < s [ owhdal e e 0 AJ B 0%01)].
With Inequalities (27) and (2) successively, we obtain

B%C
h 2 2 2
B [1}] < 25 2B 0] [ ota)del K~

To conclude, it remains to compute [ 4 @(x)dz: it equals 1 in Examples 1-3 and E[X] in Example
4 (see Lemma 10).

To deal with the second term, we first write
I R A 2
(e /A (a7 0 ®ule) = g 0 @(2) — E g 0 bu(a) = g1 0 () [(X_) | ) pla)da.
We now argue as for T

BTI-0] = [ var (a0 bulo) — i @) (X-0) ) oo,

(@)
< [t 92<Y1>HK'H%OO<R>{ () | de)d,

N 2
@n—¢H .
Lo (A)

P / S(a)dr o [02(0)] | K|~ o |

The conclusion is the same as for the first term.



ADAPTIVE WARPED KERNEL ESTIMATORS 27

7.4.3. Proof of Lemma 13. We have

Th = E[ / (gén@n(:g)—&@(m
A

o-al.
- /( nhZe { ( ) K X@'))}MX_Z-)D o(o)de,

a 2
e jlem{fc (‘I’"@“’) _d (X1)> (22 f“”)}ux_i)]) $la)d,

since (X;,Y;); are 4.i.d. given the sample (X i)i We apply the Taylor formula with Lagrange
form for the remainder term K: for b = (®,(z) — ®,,(X1))/h and a = (®(z) — ®(X;))/h, there
exists &, . between a and b such that

2 K" (dn,w,h)

K®b)—K(a)=(b—a)K'(a) + (b —a) 5

This leads to the decomposition T4 < 2T§f1 + 2T§f2, with

Tsftl = /A (E [%g(yl) { i)n(;p) — qgn(Xl)h_ q>(l’) + (I)(Xl)

o e (HSH o i

(Bn(2) — 0(X0) — B(2) + B(x1)) 2
Loev) : K" () § 160 | | 61z

1
h :/ E
52 A( h h

We now bound each of the terms.
e Upper-bound for Tgl.
Let us begin with the splitting Tgfl < 2T§f171 + 2T§f172, where

T = | (E ;em{(@"mh q)(w))z«(‘b@ f““)}(xi)
T | (E ie(m){@"wh ﬂXl))K'(q)(x) f’“”)}(x»D $(a)dr.

* Upper-bound for Tg,l,r
We have

= (B e e (520 ) e
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We now need a slightly different version of Proposition 1. We replace Kp(u — ®(X)) by any
function t o ®(X) such that the expectation exists, in the proof of Section 6.2, to obtain:

(30) E[0(Y1)t 0 ®(X;)] = / (e )g(o )i = /A HB (') s(o) ('),

B(A)

where the last inequality is the consequence of the change of variable 2 = ®~!(2’). Here, with
t=K'((®(x) — ®(X1))/h), (30) leads to

2

= g [, (@ - 0@)" ([ 15 (PO o) s,

h2
we [ ool < [ bk <M) s(x’>¢<x’>dx')2¢<x>dx,

L>=(A)
We anew apply Inequalities (27) and (2), which give

IN

We now discuss two cases, depending on the value of ®(A) (see Table 4).

- Example 1-3 (®(A) = (0;1)). By the changes of variables u = ®(x) and v’ = ®(2'),
the last inequality can be written

Cy 2 1 u—u
E|Th | < =22 I, I, = K’ Nu'.
[ 3,1,1] = nh2 /(;;1) ( ) du, avec [0;1) 3 < A g(u )du

An integration by parts permits to compute I,, (s, and thus g are assumed to be contin-
uously derivable):
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Therefore,

2
C u—1 u U —u
h 2 _ w 1IN g !
’ [Tg’m] = (031) < oK < h > o0 (h) " /(0;1) K( h )g . )du> "

- = - <—9(1)K< - %) T g(0)K () + /(0;1)K <v— %) g’<u’>du’>2du,

3C, 1
A {92(1)/(’ )K2 <v - E) dv + ¢*(0) K?(v)dv

(051)

!
+/ (g/(u/))zdu// / K? <v - i) du' | dv p
(0:1) 1) \J(051) h

3 2 2 2 2 NN 2
C’gnh {g (1)||KHL2(R) +g (0)HK||L2(R) + 1) (g (U )) du HKHLQ(R) ,

IN

IN

3C, 9 2 2
= (21913 = o1y + 1912201y ) I 32

3Cy [ - 2
o (2Nl ) + 15120 ) 1 o ey

- Example 4 (A = (0; B)). We also integrate by parts:

[—s(x’)K (M)]B + /0 " oK (M) da,

0

— _s(B)K (M) +s(0)K (%) + /OB S () K <<I>(a:) ;l@(x’)) i

IN

Ja

h h

With similar computations as in the previous examples, but with variables z and z’ in
the integrals,

B[] < 222 {s2<B> / s (W) bla)d

+52(0) /OB K> <¥> b(x)dz + /OB </0B (@)K <q’(“)+’(w/)> da:’>2 gb(:n)da:} .

There are three terms to bound. First,

B d(z) — (B
sz(B)/O K? <%> $(@)dz < ||s[|7 00 (a1 N 72 )

b o (2@
20 [ 52 (B2 )t < 1ol 1K ey

For the most complicated term, we apply the generalized Minkowski Inequality (see
Lemma 1.1 p.13 in Tsybakov 2009):

/oB (/OB s'(2) K <w> dx’>2 () dx
AP,
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Moreover,

</OB K <w> ¢(:E)dm> v < /0 R <%@<x)> du) 1/27
_ </0¢(B)/h 2 (U_ @f,))hdv> 1/2,

< \/EHKHL?(R),
and therefore
B B P(z) — Bz 2 B 2
/ / sk (2O 2N 1) paydr < BIK| s / ()| |
0 0 h 0
< hIE |2l 171 a)
At the end,
3CgB
B[] < V22 {21l gy + 15 B -
Finally, whatever the example we consider, we have shown that
302B
(31) E (7] < 21K B {2153y + Cs

with Cs = HS’HLQ(A (Examples 1-3), and Cs = Hs’HLl(A) (Example 4).

* Upper-bound for T3 12
Recall first the definition of this term:
2

Tsffm:/A E 19(1/1){(&)71()(1)(I)(Xl))K,<<I)(:E)h<I>(X1)>}(Xi) S

h h

By using that ®,, is measurable with respect to the sample (X_;)i, and by noticing that the X;’s
and Y;’s are independent of (X_;);, we can derive a conditional version of (30): for any function
t for which the expectation exists,

E[6(v)t (€n(X1), ®(X1)) [(X-0)| = /

A

t <<i>n(x'), <I>(x')> s(2)p(a")da' .

This leads to

o=/ | /. () ~2) (H252) ) swotetsast | stalas,

Now, &, (z') is an empirical mean of variables with expectation ®(z'):

o If <i>n is the empirical c.d.f, it is the mean of 1x_.<,s, with expectation Fx(z'),
o If &, ( = [y(1- E,(t))dt, it is the mean of X_; Az, with expectation ®(z') (see Lemma
10).
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Thus, we have

E [T?ffl,z] = % /AVM <% Z.Z://xTi’x%K/ <M> s(x/)tb(a:’)dx’) o(z)dz,

where T; ;v = 1x <, for Examples 1-3, and T; ,» = X_; A 2’ for Example 4 (see Table 4 and
Lemma 10). Then,

E |:T§1:172:| = # /AVar </A TM%K' <M)—T¢(az’)> s(m')gb(a:')dw') ¢(x)dz,

- = ) E ( [ (BT 1K (%) s<x’>¢<w/>dx’>2] o) dz.

We must now separate the two cases, depending on the definition of 17 ,.

- Examples 1-3.
We set v = ®(z) and v/ = ®(2) in the integrals. With Fx(X_;) = Ui, the last
inequality becomes

E [ngm} < # /(0;1)1@ [(IUW)Q] du,

1 1 —u
with Iy, , = / Ay, <w —uw) g(u/)EK/ <u hu > du/.
0

An integration by parts leads to:

1 1 u—u 1 1 u—u
I u — /_K/ /_ / /_K/ /
UL, /Ulg(u)h ( . >du /Oug(u)h < . >du,

._.
t+
SH
S
=
wn
t+
=
o
t+

=
&1
=
o
2N
IN =
w
=~
S
>
[\
S~— .
—
=
=l
=
o
=
_l_
=
&1
=
o
o
+
=
o3
=
o
BN
‘:r—'
=
=
=

g(U)K <u _hU1>>2 du,

T <
1 1 o 2
Ti’fl,l,2,2 :/ </ g,(u/)K (U hu > (1U1Su’ - u,) du,) du,
0 0 5
T < — _
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We now show that the expectations of these three terms are roughly of size h. The main
argument is that h||Kul[z2@®) = | K||p2(r). Precisely, for the first term,

E|Tf12,] = // < - )du’du

/0 2( o || 2y ' = B oy 19120y

The second term is bounded by,

E[ngl,m] < /115[/1.!{2 (”2”) (1< — )2 (¢ () dod | du,
_ //K2<U_U/>u'(l—u')(g'(u'))zdu'du,
([ () a) @eoa,

1 2
hz 1K 72

IN

IN

IN

2
R) g HL2((O;1)) :
Finally, the same method leads to

u/
Bl < [ [ o00m (U0 i < w1 e ol o

We have proved that
3 1 2
h 2 2
E [T3,172} < 1K) <2 9l oy + 3 HQ,HL2((0;1))> ,
3 2 2, Ly 2
= 1K 72wy <2 [slls + 1 HSIHH(A)) :
We gather this inequality with (31):

6 1 2
h 2 2 2
E (2] < — K2 (202usumw + 2]} + (1 +3c2) Hs’HLz(A)) .

- Example 4.
The term to bound is

E[T),] = W " Var ( / X Az (‘I’( );®(x/)>s($')¢(:n')d:n'> 6(x)dz,

nh?/ / X na g (SR oty

Ja

|
L]
e — |

<
—~

8
~—

U

8

We can split J, into two terms: J, = J, 1 + Jp 2, with

B . !
Ju1 :/0 x'legxfl%ff’ <M> s(a')p(x")da’,

B !
J:c,2 = X_l/(] 1:(:’>X71%K/ <w> S(£/)¢($/)d£/.
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We integrate J, 1 by parts:

T = X13:/8(3:/)%1(/<¢(x);¢(x,)>¢(az/)daz',

= |t

- —X_ls(X_l)K< ’

- (X—1)>

and compute similarly .J; o,

Lo = X /

o

= X, [—s(a:’)K<(I) 7) — o )

= X_1s(X_)K (

B
+X_ / s'(2) K
X1

We add the two

O(x) — @(X_ )
h

S

results:

Jo = —X_ls(B)K<‘I’(”3)—‘I’(B)>

+/0X1 s(a") K (@(;p) ;;I)(x,

)> " /OB Xy A a's' () K <‘I’(“) ;f’“”) da’

= —X_1s(B)K

) W)ﬂj 'L
D(z) — @
h

[
Y

—1 [xls(;l,;/)],K (@(
U s@)

$/)>¢(x/)dﬂc
[ o (2259
> X_ 1s(B)K<(I)(x) h@(B)>

((I)(a:) ;@(B

+ /0 Y (‘I’(w) f“”’

It follows that

with

T3121 / X2132(B)K2<

b 2
/0 £ [J2] d(a)de < —

3

O(x) -

h

a

(E [Ts}fl,z,l} +E [Ts}fl,zg} +E [Ts}fl,z,?,D

2B )> o(w)da,

TP gy = / (/ X_1 Adls' (@) ( 2) hq)(ml))dx/>2¢(x)dx,
L

O(z) —

- %”,)) dw’) é(z)dz.

33

x) —
h
s(2') +2's'(2")] K ((I)(a:) — CI>(a:’)> da’,
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For the first term

E{TQLM] = E[X2)] 82(3)/OBK2 <w> é(z)dz,

= E[X?,]s*B) /OQ(B) K> <%{’(3)> du,

= hE[X2,]s*(B) /OQ(B)/h K? <v — @) dv,

BE [X24] 81300 ()| N2

IN

For the second, we apply the generalized Minkowski Inequality (see Lemma 1.1, p.13 in
Tsybakov 2009),

2

E [T;Lm] - E _/OB </OB X Az's' (@)K <M> dm’) ¢(g;)da;] ,
< E {/OB </OB (X_1 A d's(2))? K2 <M> qb(:l?)dﬂ:) v daz}2] ,
& { [ ot ([ (R0 ) }] ,
< E[X2,] {/OB |S/($/)|\/E‘|K||L2(R)d$l}2a
= hE[X?|] ||KHL2(R)||SIH%1(A)
And finally,
=[] = [=[([ <M) ) | s
< E [X 1/03 /OX 1 <w> dx/(b(a;)da;] ,
< OB /OB s <(x)+q)($/)> da'¢(x)dx,
< RE[X ] [|K (|72 gy 5172 -
At the end,
E[Tha] < 1K (B 15l + B X2 151 ) + E XAl Islag)) -

We gather this inequality with (31), like for the first three examples:

6
BT € K (1513 EIX2)] + 20552

813 oy (ELX21] + CoB2) + ELX ] sl32() ) -

The upper-bound of T?ffl is thus completed in each of the examples.

e Upper-bound for ng.
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We again split the term: T?fo < 4T£271 + 4T§f272, with

— . 2 2
h 1 <¢n($> B ¢($)) I (A
Ty = [ B [760) P K (@) g 1(X20) | | ()
A
- ) 2 2
h 1 <¢H(X1) B ¢(X1)> UAEN
1)y, = [ | E| 5000 - K" (Gnan) {1(X-0) | | 0@
A
The two terms can be bounded in the same way. We detail the computation for the first one:
1 A 4 . 2
T < g [ B[P0 (0.0 - 0@) ' (5 @na))” (X0 | o0l
< o [ERE) I ] ||#0 0| K| o)
= 36 A 1 —1 n Loo(A) L= (R) )

1 . 4 )
- E/AQS(x)dﬂcE [92(}/1)] H(I)" — cpHLOO(A) HKNHLoo(R) .

The conclusion is analogous as the one of the proof of Lemma 12 (see Section 7.4.2). We obtain
1

n2hb’

where k1 = 1 for Examples 1-3, and k1 = B*E[X] in Example 4. The same bound holds for

T£2,2' At the end,

E [T?ffz,l} < mE [92(Y1)] HK//H2L°°(R) Ca

1
E |:T3ffg:| S 8HIE [92(Y1):| HK//HiOO(R) C4’I’L2—h,6

8. APPENDIX 2: GENERALIZATION OF THE PROOF OF LEMMA 5

8.1. Objective. Recall that Lemma 5 gives a bound of size 1/n for

B swp 02,07 |,
t€5(0,1) 4
with, for any ¢ € S(0,1) (a subset of S(0,1) = {t € L' (®(A)) N L*(®(A)), [t L2@(ay) = 1})

1 n
=33 [ (OO0 Kis (1= 00X B[00 i (0= @O0

and where V (h) = || K| 2y E[0(Y1)?]/(nh) for a numerical &’ > 0. We have provided in Section
6.6.1 a proof which depends on the different considered examples, mainly under Assumption (H1)
(s is bounded). The aim of this section is to show that a general proof is possible with (H1)
replaced by the following slightly stronger assumption:

(H1pis) (i) The conditional expectation E[#(Y")|X] is bounded,

(ii) The ratio fx/® is bounded.
To see that (H1p;s) is more restrictive than (H1), one must recall that the target function s can
be defined by (4): s = (fx/®)E[0(Y)|X].
Notice that Assumption (i) is automatically fulfilled in Example 3-4, since 0(Y) = Y, with YV
bounded by 1. Moreover, if ® = Fx, the ratio fx /¢ equals 1 and (ii) is satisfied.
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Under (H1p;s), we give a proof which embraces Examples 1-4 and moreover, permits to handle
all the statistical settings covered by the formula (4). In the sequel, so(X) := E[6(Y)|X].

8.2. Generalized proof. We begin with the following splitting of the empirical process: v, j, =

V08 421 (22 0

, where v has the form

1 n
== b -E[el]. re tan. @), 2 m)
i=1
with, for k2 = ®/n/In(n) (¢ > 0),

V(X)) =s0(X) [ Ky (u— (X)) Hu)du
D(A)

5(2 1b) (X“ Y;) = (0(}/@) — So(XZ)) 1|9(Yi)—SO(Xi)|SR% [I)(A) Kh/ (u — (I)(XZ)) t(u)du,

b
(2 2 )(X“ V) = (6’(}/2) — SO(Xi)) 1|9(Y¢)—80(X,-)|>/@% [I)(A) Ky (u — @(XZ)) t(u)du.

The guideline is to apply the Talagrand Inequality (Lemma 6) to bound the first two empirical
processes Vr(ll,bl) and 1/7(12,’1117), and bound the third one roughly. Details can be found in the three
following seétions, in which we often refer to Section 6.6.1, since the computations are similar.
Finally, gathering the three upper bounds of size 1/n (up to constant) permits to complete the

proof of Lemma 5.

Remark 2. Clearly, if 6 is bounded, the proof can be greatly simplified, since there is no use
in splitting the empirical process in this case. However, we choose to give the most general
formulation.

1b)

8.2.1. Upper-bound for A b - To apply the concentration results of Lemma 6, we first need to

compute appropriate values for the bounds Ml( ), H) and v, The computation for the
first quantity is totally similar to the one done for Ml( ) in Section 6.6. 1, and leads to M, (15) _

||80||L00(A)||K||L2(R)\/E. In an analogous way, we first obtain

E

(16) /1y \ 2 o E[s3(X))]
sup (v, . (t) < K| — .
t€5(0,1) ( " ) ] L2 nh

But, E[s3(X1)] = E[E[0(Y1)|X1]?] < E[p%(1)]. Thus, we set (H{'”)? = E[02(Y)]|[K||22 g, /nh.

Finally, v(® is a bound for the following variance:

IN

2
Var (65](X1)) < E sg(X1)< Kh(u—CD(Xl))t(u)du) ,

B(A)

2
HSOH%OO(A)E (A(A) Kp(u — (I)(Xl))t(u)du>

IN
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The difference between this computation and the one of v(!) in Section 6.6.1 is the way to deal
with the expectation:

2
E [(A(A) Kh(U—q)(Xl))t(U)dU> ] = E [(Kh*t1¢(A))2(<I>(X1))] :

_ /A (K *tlag)” (@(x)) fx (2)da
|5

IN

) /A (Kh * t1¢(A))2 (®(z)) ¢(x)dw,

thanks to Assumption (H1p;s) (ii). The change of variables u = ®(z) leads to

2
E {( Kp(u— <I>(Xi))t(u)du> ] Hf—X
D(A)

(32) -

IA

/ (Kh*t1q>(,4))2 (u)du,
Loo(A) JP(A)

B

1 % tLa(a) [ 2
L= (A)
We end the computation in the same way as previously (see v Section 6.6. 1), and then
= | fx /Bl po ()l K| L1 (r)- Now, applying the Talagrand Inequahty is straightforward, and,
hke in Section 6.6.1, thanks to Assumptions (H2)-(H3), we obtain

E
heH,

C
< Z.
n

( sp (v0) 201+ 25)\\K|riz(R>Ew2<X1>]n—1h>
.

teS(0,1)

8.2.2. Upper-bound for 1/(2 ) We also precise the quantities which permit to apply the concen-

tration result. Their computatlons are also inspired by Section 6.6.1, and precisely by the bound

for Vy(f;j). To begin, we choose M(2b n”KHL2 \/ﬁ For H(2b), similarly to H® we first
obtain
1) 3\ 2 1 2 2
El s (vh0) ] < SE[001) —so(x1)? | KRu—®(X1))du
n B(A)

teS(0,1)

But, f@(A) K2 (u—®(X1))du < ||Kh||%2(R), and
(33) E[(6(v1) - so(X1))?] = E[Var(0(v)| X1)] < E[6*(¥3)].

Therefore, we set (H{*)2 = E[9%(Y1)]|| K |22z, /nh. Finally,

2
Var <£(2 1b) (XLYVI)) < E (0(Y1 —80 X1 (/ Kh u—® )) ( )du> :| R

IA
!
<!
<
no
=
~~
=
g
|
Py
s
=
£
U
S
N———
I
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by using (33). It remains to recall that (32) holds, to set v(?) = E[02 (YD) 1K || 11 (r)
Once again, the existence and size of these three quantities justify that we obtain

2 1 c
2 E[( s (1157(1) —2(1+25)\\Kuiz(R>Ew2<X1>]—h> =
heH teS(0,1) n n

n

8.2.3. Upper-bound for fo,’fb). We exactly follow the same line as for l/r(?i) (see Section 6.6.1) to
write

E[ sup (Vé?}?b)(t))Q] < —IE

teS(0,1)

(0(Y1) — 50(X1))* Lijva)—so (1) |>nb}/ Kj U—‘P(Xl))dul,

HK”L2 R
< 2IEA®) { (Y1) — s0(X1))? 1{\9(Y1)—50(X1)|>r~%}] ’

b
< HKuLz(R W) g [l vi) — so(x0) 7).

with p defined by (H5). As previously, the way to conclude can be found in Section 6.6.1,

wn (L(0)°

“ C
heH,, tES_(Ql)

S_
n
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