Rates of convergence in the strong invariance principle for non adapted sequences. Application to ergodic automorphisms of the torus - Archive ouverte HAL
Communication Dans Un Congrès Année : 2013

Rates of convergence in the strong invariance principle for non adapted sequences. Application to ergodic automorphisms of the torus

Résumé

In this paper, we give rates of convergence in the strong invariance principle for non-adapted sequences satisfying projective criteria. The results apply to the iterates of ergodic automorphisms T of the d-dimensional torus, even in the non hyperbolic case. In this context, we give a large class of unbounded functions f for which the partial sum of f o T +... + f o T^n satisfies a strong invariance principle with an explicit rate of convergence.
Fichier principal
Vignette du fichier
torusrevised.pdf (237.17 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00713797 , version 1 (02-07-2012)

Identifiants

  • HAL Id : hal-00713797 , version 1

Citer

Jérôme Dedecker, Florence Merlevède, Françoise Pene. Rates of convergence in the strong invariance principle for non adapted sequences. Application to ergodic automorphisms of the torus. High dimensional probability 6, Oct 2011, Banff, Canada. pp.113-138. ⟨hal-00713797⟩
177 Consultations
259 Téléchargements

Partager

More