Boundary trace of positive solutions of supercritical semilinear elliptic equations in dihedral domains - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2013

Boundary trace of positive solutions of supercritical semilinear elliptic equations in dihedral domains

Résumé

We study the generalized boundary value problem for (E)\; $-\Delta u+|u|^{q-1}u=0$ in a dihedral domain $\Gw$, when $q>1$ is supercritical. The value of the critical exponent can take only a finite number of values depending on the geometry of $\Gw$. When $\gm$ is a bounded Borel measure in a k-wedge, we give necessary and sufficient conditions in order it be the boundary value of a solution of (E). We also give conditions which ensure that a boundary compact subset is removable. These conditions are expressed in terms of Bessel capacities $B_{s,q'}$ in $\BBR^{N-k}$ where $s$ depends on the characteristics of the wedge. This allows us to describe the boundary trace of a positive solution of (E)
Fichier principal
Vignette du fichier
Diedral3.pdf (324.64 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00709073 , version 1 (17-06-2012)
hal-00709073 , version 2 (30-09-2013)
hal-00709073 , version 3 (07-10-2013)
hal-00709073 , version 4 (02-07-2014)

Identifiants

Citer

Moshe Marcus, Laurent Veron. Boundary trace of positive solutions of supercritical semilinear elliptic equations in dihedral domains. 2013. ⟨hal-00709073v2⟩
237 Consultations
176 Téléchargements

Altmetric

Partager

More