Learning geometric combinations of Gaussian kernels with alternating Quasi-Newton algorithm - Archive ouverte HAL
Communication Dans Un Congrès Année : 2012

Learning geometric combinations of Gaussian kernels with alternating Quasi-Newton algorithm

Résumé

We propose a novel algorithm for learning a geometric com- bination of Gaussian kernel jointly with a SVM classifier. This problem is the product counterpart of MKL, with restriction to Gaussian kernels. Our algorithm finds a local solution by alternating a Quasi-Newton gradi- ent descent over the kernels and a classical SVM solver over the instances. We show promising results on well known data sets which suggest the soundness of the approach.
Fichier principal
Vignette du fichier
picard12esann.pdf (136.35 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00705374 , version 1 (07-06-2012)

Identifiants

  • HAL Id : hal-00705374 , version 1

Citer

David Picard, Nicolas Thome, Matthieu Cord, Alain Rakotomamonjy. Learning geometric combinations of Gaussian kernels with alternating Quasi-Newton algorithm. 20th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, Apr 2012, Bruges, Belgium. pp.79-84. ⟨hal-00705374⟩
415 Consultations
179 Téléchargements

Partager

More