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Abstract. We propose a novel algorithm for learning a geometric com-
bination of Gaussian kernel jointly with a SVM classifier. This problem
is the product counterpart of MKL, with restriction to Gaussian kernels.
Our algorithm finds a local solution by alternating a Quasi-Newton gradi-
ent descent over the kernels and a classical SVM solver over the instances.
We show promising results on well known data sets which suggest the
soundness of the approach.

1 Introduction

Multiple Kernel Learning(MKL) [1] is now widely used in machine learning ap-
plications as an alternative method for combining multiple features, thanks to
the availability of efficient algorithms [2, 3]. It is also a very hot topic in Com-
puter Vision community where the visual feature combination problem is very
challenging for classification tasks (see for instance the workshop on Kernels and
Distances for Computer Vision at ICCV 2011). Different features are obtained
by projection of local descriptors on a visual codebook, and MKL strategies
used to optimize their combination [4]. More general combinations have been
proposed by Varma et al. in [5] along with a gradient descent based learning
algorithm named GMKL, which when considered with a sum combination boils
down to the MKL problem. Varma also investigate the use of a weighted prod-
uct combination of Gaussian kernels and found it to be more powerful than the
sum combination.

In this paper, we further analyze the product combination of Gaussian ker-
nels. Our contributions are three fold: (1) For our specific kernel combination,
called PKL, we propose a novel optimization scheme, different from the Varma’s
algorithm. It is based on alternating a quasi-Newton gradient descent for learn-
ing the kernel weights and a classical SVM solver for the sample weights; (2) We
discuss about convexity for these classes of problems and show that the associ-
ated optimization problem is non-convex; (3) we show promising results on well
known data sets.



2 Product kernel learning

We first define the notations used in this paper. Let {x; € RM}lgiSN be a
training set of samples x;, and f a decision function in a RKHS H. H is the
combination of M RKHS H,, with minor kernels K,,(-,-) = e /m%m{+) such
that the major kernel K(-,-) = [],, e~ "9 (). We denote d,,(-,-) the distance
on the subspace H,,,. We propose to obtain the decision function f by solving
the following optimization problem:

i U3+l & 1
min sl +C i & (1)

st yi(f(xi)+0) >1-&, &>0,Vi v, >0,YVm

subscript m always denotes the minor kernels and ranges from 1 to M, and
subscript ¢ and j always denote the training samples and range from 1 to N.
For the sake of clarity, we now omit these ranges in the summation/product
symbols.

We name this learning problem Product Kernel Learning (PKL). In [5],
Varma et al. proposed an algorithm for learning any general combination of
kernels named GMKL. Our problem is thus a special case of GMKL restricted
to a product of Gaussian kernels. However, it can be applied to any product of
Gaussian kernels, regardless of the distance used. Following the methodology of
[2], we propose to solve this optimization problem using an alternate strategy :

min J(y) such that ~, >0,Ym (2)
Bt
with: ) ) )
mingpe  sllfIB+CX&G
J(v) = s.t. yi(f(x;) +b) > 1—¢&;,Vi (3)

We remark that J(7) is the optimal value of a standard SVM problem and thus
it can be expressed using a standard SVM dual formulation:

J(v) = max A(e, )

s.t. )‘(aa 'Y) = Zz Qy — % Zm’ QY Y5 Hm e~ Ymdm (Xi,X;) (4)
Zi Q;Y; = 0, 0 S Q5 S C, Vi

thanks to the strong duality of the SVM problem, we can express the PKL
problem using this dual formulation:

minmas 50— 35, gy T, e 0% )
s.t. Yy =0, 0<a;<C, Vi

We now want to stress two points about the optimization problem. First of all,
one should note that our PKL framework does not implicitly impose any sparsity
constraints in the optimization problem, making it rather simple. However, as we



shall see in the experimental section, the algorithm still tends to make weights
related to irrelevant minor kernels to 0, inducing then sparsity in that sense.
Another point that we make clear in this paper is the non-convexity of the
problem. Although, there exists a general intuitive agreement that the problem
(5) is not convex [5], we provide in the sequel a clear proof of this statement.

Finally, similarities can be seen with model selection problems for ARD Ker-
nel like in [6]. However, algorithms in this category usually optimize their crite-
ria on a validation set, whereas our optimization problem is defined on a single
training set.

3 QN-PKL optimization scheme

In [5], the authors propose an alternating procedure between « and v subprob-
lems, where the 7 step is performed using a simple gradient descent. We propose
to improve this step by using a Quasi-Newton descent. The overall optimization
scheme is shown in algorithm 1, where I" is the vector of ,, parameters and A
the vector of a,y; parameters.

In the inner loop, we obtain the a* solution of equation (4) by the use of a
very fast and efficient SVM solver (in our case LaSVM [7]). We approximate
the inverse Hessian matrix by a diagonal matrix B inspired by successful Quasi-
Newton procedure used in large scale linear SVM [8]. Consequently, we named
the algorithm QN-PKL. At each iteration ¢, we search for an improvement of
the objective value in the descent direction p;—; (opposite of gradient direction),
weighted by B;_; and a step size §. The step size ¢ is decimate exponentially
until an improvement is found or § < . After the possible objective function
improvement, the descent direction p; is updated according to the following
equation:

b~ [AT (Do K)A],, (6)

With o being the Hadamard product between matrices. B is updated according
to the following diagonal discrete approximation:

Ty[m] — Ty_q1[m]

B pt[m] - pt—l[m] m

(7)

4 Convexity

In the hereby section, we prove the PKL problem to be non convex. The proof
is based on showing that A(«, ) is non convex with respects to 7, making thus
the full problem (5) non-convex. Let us compute the Hessian H., of X over v :
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Algorithm 1 QN-PKL

Input: training set A = {;,y;}, parameters I'y = {7} inited to ;;, threshold e,
initial learning rate by
(A, 0) «+~SVMSolve(A, I') // initial alpha coeflicients, initial cost o
p1 < —5 [AT(Dm o K)A]_, B1 < [b1],, // init descent direction and scale
g < o0 // set objective gap to infinity
t < 1 // first iteration
while g > € do
0 < o // init § value
repeat
I’ + Iy + 5Btpt // update T
(A,7) + SVMSolve(A, I'') // update « coeflicients, new cost r
6+ % // decrease update step for next loop
until r <o or d<e
t + t+1 // increase iterations
Iy < I // store new T
pi < —3 [AT (D o K)A] // update descent direction

Ty[m]—Ty_q[m]
B: « [pt[m]_Pt—l[m]
g < %5, 04+ r // compute objective gap and store old value

end while

} // update direction scale

with A being the vector of ay, Dy the distance matrix relative to component k,
and K the Gram matrix of kernel K (-, -).

Suppose H, is positive semi-definite, then all its diagonal values are positive
or null for any A coefficients:

VA, Vk, —%AT(D;;2 0 K)A >0 (10)

which means that the matrix C' = f%Dgz o K is itself positive semi-definite. Let
us denote A the vector of eigenvalues of C. We remark that:

tr(C)=A"1=0 (11)

However, all eigenvalues of C' are positive or null since C' is positive semi-
definite, thus A = 0 and consequently C' = 0. This result is absurd since neither
Dy, nor K are null (outside the trivial case were all samples x; are the same
vector). This means that C' is not positive semi-definite, and consequently H,
is not positive semi-definite.

The same reciprocal reasoning can be done with negative semi-definite prop-
erty, which in turns means that H, is indefinite. The direct consequence is that
the complete Hessian H with respects to all primal variables is indefinite and
thus PKL optimization is not convex.



Table 1: Classification accuracies for SimpleMKL and QN-PKL on UCI data
sets. M is the number of features.

Data M | MKL (%) time | QNPKL (%) time | GMKL[5] SVM
Sonar 60 | 77.9 £5.5 6.2s 86.6 +3.4 1.0s 82.3 £4.8 | 81.3 £3.9
Tono 34 | 91.3 £2.3 T.1s 94.1 +1.5 0.6s 93.0 £2.1 90.1 £2.3
Pima 8 71.4 £4.1 4.4s 76.4 £1.9 28s | 77.2 £2.1 | 75.4 2.3

5 Experiments

We carried out experiments comparing our QN-PKL with MKL and SVM on 3
standard UCI data sets. We used the same setup as in [5] (i.e. one Gaussian
kernel per component as minor kernels, SVM using a product combination with
uniform weights). For fairness of the MKL time evaluation, we use our own Java
implementation of SimpleMKL [2] with the same internal SVM solver!.

In table 1, we present a comparison of mean accuracies on sonar, ionosphere,
and pima data sets. We can see that the PKL performs better on all three
data-sets. This can be explained by the fact that the generalized Gaussian
kernel is more powerful than a sum of axis-wise Gaussian kernels, even with
PKL converging to a local optimum.

We also report results from [5] on these datasets. We obtain better per-
formances on larger dimensional data-sets, and similar performances on lower
dimensional data-sets. It is worth noting that GMKL uses a ¢s regularization
penalty on low dimensional data-set (e.g. pima) which leads to less sparse com-
bination and better results, whereas QN-PKL doesn’t use any regularization
constraint at all.

We plot kernel weights (normalized to 1) of both algorithms for the Sonar
data set on Fig. 1. We can see that QN-PKL outputs less uniform combinations
than MKL, even though there is no sparse regulization constraint in our algo-

Lsoftware is available at http://perso-etis.ensea.fr/ picard

(a) Weights of MKL. (b) Weights of QN-PKL.

Fig. 1: Comparison of obtained weights for the Sonar data set.



Table 2: Classification accuracies for SimpleMKL and QN-PKL on Noisy UCI
data sets.

Data set MKL (%) R | QN-PKL (%) R
Sonar 722 £ 35 849 80.8 £ 6.3 97.7
Inonosphere | 91.2 + 2.6 67.2 93.3 + 24 99.9
Pima 715 £34 61.1 74.8 + 3.0 89.9

rithm. We explain this natural sparse behavior by the product of kernels which
acts as an "AND’ gate.

Regarding computational time, QN-PKL seems between 5 and 10 times faster
than SimpleMKL on a 3GHz Intel Core2 Duo laptop.

To investigate the sparsity of QN-PKL, we then added 25 random features
sampled from the Normal distribution at the end of each input vectors. In table
2, we present accuracies for these noisy data sets. We also compute the ratio
R= Z%Zl Y/ Z%if % 4 of the relevant weights over the total weights. Using
this measure, we can see that QN-PKL is much more efficient at zeroing noisy
kernels than MKL, even without any sparsity constraint.

6 Conclusion

This paper presents a fast Quasi-Newton algorithm for learning a product of
Gaussian kernels, named QN-PKL. We prove the related problem to be non-
convex. QN-PKL finds a local solution by alternating a standard SVM op-
timization loop for learning sample weights, and a approximate second order
descent for the kernel weights. Experiments show our algorithm to be as effec-
tive as SimpleMKL while being significantly faster. Moreover, QN-PKL seems
to be naturally more efficient at discarding irrelevant features than MKL.
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