Semi-infinite paths of the 2d-Radial Spanning Tree - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2012

Semi-infinite paths of the 2d-Radial Spanning Tree

Résumé

We study semi-infinite paths of the radial spanning tree (RST) of a Poisson point process in the plane. We first show that the expectation of the number of intersection points between semi-infinite paths and the sphere with radius r grows sublinearly with r. Then, we prove that in each (deterministic) direction, there exists with probability one a unique semi-infinite path, framed by an infinite number of other semi-infinite paths of close asymptotic directions. The set of (random) directions in which there are more than one semi-infinite paths is dense in [0,2 pi). It corresponds to possible asymptotic directions of competition interfaces. We show that the RST can be decomposed in at most five infinite subtrees directly connected to the root. The interfaces separating these subtrees are studied and simulations are provided.
Fichier principal
Vignette du fichier
interfaces10.pdf (806.55 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00703051 , version 1 (31-05-2012)
hal-00703051 , version 2 (24-09-2012)

Identifiants

Citer

François Baccelli, David Coupier, Viet Chi Tran. Semi-infinite paths of the 2d-Radial Spanning Tree. 2012. ⟨hal-00703051v1⟩
360 Consultations
145 Téléchargements

Altmetric

Partager

More