Observer for Lipschitz nonlinear systems: mean value theorem and sector nonlinearity transformation - Archive ouverte HAL
Communication Dans Un Congrès Année : 2012

Observer for Lipschitz nonlinear systems: mean value theorem and sector nonlinearity transformation

Résumé

In this paper, the problem of observer design for nonlinear Lipschitz systems is treated. An emphasis is put on maximizing the admissible Lipschitz constant for which the observer design is possible. This problem is tackled using a Takagi-Sugeno modeling approach. The idea is to re-write the state estimation error dynamics as an autonomous Takagi- Sugeno system, using the Mean Value Theorem and the sector nonlinearity transformation. The stability of the state estimation error is studied with the Lyapunov theory by using a non- quadratic Lyapunov function and by computing its variation between m consecutive samples. The interest of these manip- ulations is to obtain LMI conditions admitting solutions for large values of the Lipschitz constant. Finally, two examples are provided in order to hilight the performances of the proposed approach.
Fichier principal
Vignette du fichier
Ichalal_MSC_12.pdf (240.88 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00702669 , version 1 (08-04-2014)

Identifiants

  • HAL Id : hal-00702669 , version 1

Citer

Dalil Ichalal, Benoît Marx, Said Mammar, Didier Maquin, José Ragot. Observer for Lipschitz nonlinear systems: mean value theorem and sector nonlinearity transformation. IEEE Multi-Conference on Systems and Control, MSC 2012, Oct 2012, Dubrovnik, Croatia. pp.CDROM. ⟨hal-00702669⟩
198 Consultations
1900 Téléchargements

Partager

More