Non-D-finite excursions in the quarter plane - Archive ouverte HAL
Article Dans Une Revue Journal of Combinatorial Theory, Series A Année : 2013

Non-D-finite excursions in the quarter plane

Résumé

We prove that the sequence $(e^{\mathfrak{S}}_n)_{n\geq 0}$ of excursions in the quarter plane corresponding to a nonsingular step set~$\mathfrak{S} \subseteq \{0,\pm 1 \}^2$ with infinite group does not satisfy any nontrivial linear recurrence with polynomial coefficients. Accordingly, in those cases, the trivariate generating function of the numbers of walks with given length and prescribed ending point is not D-finite. Moreover, we display the asymptotics of $e^{\mathfrak{S}}_n$.
Fichier principal
Vignette du fichier
BoRaSa12.pdf (244.02 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00697386 , version 1 (15-05-2012)
hal-00697386 , version 2 (05-12-2013)

Identifiants

Citer

Alin Bostan, Kilian Raschel, Bruno Salvy. Non-D-finite excursions in the quarter plane. Journal of Combinatorial Theory, Series A, 2013, 121, pp.45-63. ⟨10.1016/j.jcta.2013.09.005⟩. ⟨hal-00697386v1⟩
528 Consultations
399 Téléchargements

Altmetric

Partager

More