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NON-D-FINITE EXCURSIONS IN THE QUARTER PLANE

ALIN BOSTAN, KILIAN RASCHEL, AND BRUNO SALVY

Abstract. We prove that the sequence (eSn )n≥0 of excursions in the quarter plane corresponding
to a nonsingular step set S ⊆ {0, ±1}2 with infinite group does not satisfy any nontrivial linear re-
currence with polynomial coefficients. Accordingly, in those cases, the trivariate generating function
of the numbers of walks with given length and prescribed ending point is not D-finite. Moreover,
we display the asymptotics of eSn .

1. Introduction

1.1. General context. Counting walks in a fixed region of the lattice Zd is a classical problem in
probability theory and in enumerative combinatorics [48, 52, 26, 47, 46, 19, 16, 27, 56, 57, 6, 38, 5].
In recent years, the case of walks restricted to the quarter plane N2 = {(i, j) ∈ Z2 | i ≥ 0, j ≥ 0}
has received special attention, and much progress has been done on this topic [35, 41, 32, 31, 24, 13,
12, 11, 43, 9, 34, 44, 45, 14, 22, 18, 23, 37, 36, 25, 49, 7]. Given a set S of allowed steps, the general
problem is to study S-walks in the quarter plane N2, that is walks confined to N2, starting at (0, 0)
and using steps in S only. Denoting by fS(i, j, n) the number of such walks that end at (i, j) and
use exactly n steps, the main high-level objective is to understand the generating function

FS(x, y, t) =
∑

i,j,n≥0

fS(i, j, n)xiyjtn ∈ Q[[x, y, t]],

since this continuous object captures a great amount of interesting combinatorial information about
the discrete object fS(i, j, n). For instance, the specialization FS(1, 1, t) counts S-walks with
prescribed length, the specialization FS(1, 0, t) counts S-walks ending on the horizontal axis, and
the specialization FS(0, 0, t) counts S-walks returning to the origin, called S-excursions.

1.2. Questions. From the combinatorial point of view, the ideal goal would be to find a closed
form expression for fS(i, j, n), or at least for FS(x, y, t). This is not possible in general, even
if one restricts to particular step sets S. Therefore, it is customary to address more modest,
still challenging, questions such as: determine the asymptotic behavior of the sequence fS(i, j, n);
determine the structural properties of FS(x, y, t): is it algebraic (that is, root of a polynomial in
Q[x, y, t, T ])? is it D-finite? (in one variable t this means solution of a linear differential equation
with coefficients in Q[t]; in several variables the appropriate generalization [40] is that the set of all
partial derivatives spans a finite-dimensional vector space over Q(x, y, t)). These two questions are
related, since the asymptotic behavior of the coefficient sequence of a power series is well understood
for algebraic and D-finite power series [29].

1.3. Main result. In this work, we prove that the generating function

FS(0, 0, t) =
∑

n≥0

eSn tn ∈ Q[[t]]

of the sequence (eSn )n≥0 of S-excursions is not D-finite for a large class of walks in the quarter
plane. Precisely, this large class corresponds to all small step sets S ⊆ {0, ±1}2 for which a certain
group G(S) of birational transformations is infinite, with the exception of a few cases for which
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FS(0, 0, t) = 1 is trivially D-finite (these exceptional cases are called singular, see below.) If χ = χS

denotes the characteristic polynomial of the step set S defined by

χ(x, y) =
∑

(i,j)∈S

xiyj ∈ Q[x, x−1, y, y−1],

then the group G(S) is defined [24, 14] as a group of rational automorphisms of Q(x, y) that leave
invariant the (Laurent) polynomial χ(x, y). Up to some equivalence relations, there are 51 cases of
nonsingular step sets in N2 with an infinite group. They are depicted in Table 1 in Appendix 3.
With these definitions, our main result can be stated as follows.

Theorem 1. Let S ⊆ {0, ±1}2 be any of the 51 nonsingular step sets in N2 whose group is infinite.
Then the generating function FS(0, 0, t) of S-excursions is not D-finite. Equivalently, the sequence
of excursions (eSn )n≥0 does not satisfy any nontrivial linear recurrence with polynomial coefficients.
In particular, the full generating function FS(x, y, t) is not D-finite.

1.4. Previous results.

1.4.1. Structural properties. While it is known that unrestricted walks in Z2 have rational gener-
ating functions and walks restricted to a half-plane in Z2 have algebraic generating functions [3], a
first intriguing result about walks in the quarter plane is that their generating functions need not
be algebraic, and not even D-finite. For instance, Bousquet-Mélou and Petkovšek [12] proved that
this is the case for the so-called knight walk with S = {(2, −1), (−1, 2)}. (This actually constitutes
one of the initial motivations to the study of walks evolving in the quarter plane.) It was later
shown [45] that this remains true even if one restricts to next nearest neighbor walks: there still exist
step sets S ⊆ {0, ±1}2, for instance S = {(−1, 1), (1, 1), (1, −1)}, such that the series FS(x, y, t) is
not D-finite.

We restrict in the remaining of this text to next nearest neighbor walks, and reserve the wording
small step walk to such particular walks in the quarter plane. Several sporadic cases of small
step walks with D-finite generating functions have been known for a long time; among them,
the most popular ones are Kreweras’ walks [35, 11] for which S = {(−1, 0), (0, −1), (1, 1)}, and
Gouyou-Beauchamps’ walks [32] for which S = {(1, 0), (−1, 0), (−1, 1), (1, −1)}. A whole class
of small step walks with D-finite generating functions was first identified in [12, §2]: this class
contains step sets that admit a vertical (or a horizontal) symmetry. Another class, including
S = {(0, 1), (−1, 0), (1, −1)} and S = {(0, 1), (−1, 0), (1, −1), (0, −1), (1, 0), (−1, 1)}, corresponds
to step sets that are left invariant by a Weyl group and whose walks are confined to a corresponding
Weyl chamber [31].

A first systematic classification of small step walks with respect to D-finiteness was then un-
dertaken by Mishna [43, 44], but only for step sets of cardinality at most three. A complete, still
conjectural, classification was obtained in [9] using computer algebra tools. Almost simultaneously,
Bousquet-Mélou and Mishna [14] rigorously proved that among the 28 possible cases of small step
walks there are exactly 79 inherently different cases of walks in the quarter plane, and they identified
among them 22 cases of step sets S having a D-finite generating function FS(x, y, t).

A 23rd case, namely G = {(1, 0), (−1, 0), (1, 1), (−1, −1)}, known as Gessel walks, was discovered
and proved to be D-finite, and even algebraic, in [10], using computer algebra techniques. It was
proved afterwards in [22] by a different approach that for any fixed value t0 ∈ (0, 1/4), the bivariate
generating function FG(x, y, t0) for Gessel walks is algebraic over R(x, y). To our knowledge, there
is currently no “purely mathematical” proof of the algebraicity (and even of the D-finiteness) of
the full generating function FG(x, y, t).

Bousquet-Mélou and Mishna [14] showed that the 23 cases of step sets S with D-finite generating
function FS(x, y, t) correspond to walks possessing a finite group G(S). Informally speaking, the
group of a walk is a notion that captures symmetries of the step set and that is used to generalize a
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classical technique in lattice combinatorics called the “reflection principle” [26, Ch. III.1]. Moreover,
Bousquet-Mélou and Mishna [14] conjectured that the 56 remaining models with infinite group have
non-D-finite generating functions FS(x, y, t). This was recently proved in [37] for the 51 nonsingular
walks, that is, for walks having at least one step from the set {(−1, 0), (−1, −1), (0, −1)}. It is
worth mentioning that for these 51 models, the non-D-finiteness of FS(x, y, t) was obtained as a
consequence of the non-D-finiteness of this series as a function of x, y. Further, before our work,
nothing was known about the non-D-finiteness of FS(0, 0, t). Two out of the five singular walks
were already shown to have non-D-finite generating series in [45]. Therefore, before this work, there
still remained 3 cases of singular walks for which the generating function FS(x, y, t) was suspected,
but not yet proved, to be non-D-finite [42].

1.4.2. Closed form expressions. Kreweras [35] and Gouyou-Beauchamps [32] found explicit counting
formulas for the walks named after them. For Gessel walks, an explicit formula for excursions was
conjectured around 2000 by Ira Gessel and proved by Kauers, Koutschan and Zeilberger in [34]. A
closed form expression (in terms of nested radicals) for the full Gessel generating function FG(x, y, t)
was proved in [10]. Some other explicit formulas for fS(i, j, n) and for FS(x, y, t), or some of their
specializations, have been obtained in cases when S admits a finite group [14]. A different type
of explicit expressions (integral representations) for the generating function of Gessel walks was
obtained in [36]. The approach of [36] was later generalized in [49] to all the 74 nonsingular walks.
Finally, the article [7] provides unified formulas in terms of Gaussian hypergeometric functions for
all D-finite transcendental series FS(x, y, t). Again, no “purely human” (computer-free) proof of
this result is known yet.

1.4.3. Asymptotics. Concerning asymptotics, conjectural results were displayed in [9] for the coeffi-
cients of FS(1, 1, t) when this latter function is D-finite. Some of these conjectures have been proved
in [14]. Explicit asymptotics for the coefficients of FS(0, 0, t) and FS(1, 1, t) were conjectured even
in non-D-finite cases in some unpublished tables [8]. In a recent work, Denisov and Wachtel [18]
obtained explicit expressions for the asymptotics of excursions FS(0, 0, t) in a much broader setting;
in particular, their results provide (up to a constant) the dominating term in the asymptotics of the
n-th coefficient of FS(0, 0, t) in terms of the step set. Even more recently, Fayolle and Raschel [25]
showed that the dominant singularities of FS(0, 0, t), FS(1, 0, t) and FS(1, 1, t) are algebraic num-
bers, and announced more general and precise results about asymptotics of coefficients of FS(0, 0, t),
FS(1, 0, t) and FS(1, 1, t) [21].

2. Probability, Number Theory and Algorithms

2.1. Contributions. In the present work, we prove the non-D-finiteness of the generating series
of excursions FS(0, 0, t) for the 51 cases of nonsingular walks with infinite group. As a corollary,
we deduce the non-D-finiteness of the full generating function FS(x, y, t) for those cases. Indeed,
D-finite series are closed under Hadamard product [40] and 1/(1− t) is clearly D-finite with respect
to x, y, t. This corollary has been already obtained in [37], but the approach here is at the same
time simpler, and delivers a more accurate information. This new proof only uses asymptotic
information about the coefficients of FS(0, 0, t), and arithmetic information about the constrained
behavior of the asymptotics of these coefficients when their generating function is D-finite. More
precisely, we first give consequences of the general results in [18] in the case of walks in the quarter
plane. If en = eSn denotes the number of excursions of length n using only steps in S, this analysis
implies that, when n tends to infinity, en behaves like K · ρn · nα, where K = K(S) > 0 is a real
number, ρ = ρ(S) is an algebraic number, and α = α(S) is a real number such that c = cos( π

1+α )
is an algebraic number. Moreover, explicit real approximations for ρ, α and c can be determined to
arbitrary precision, and exact minimal polynomials of ρ and c can be determined algorithmically
starting from the step set S. For the 51 cases of nonsingular walks with infinite group, this enables
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us to prove that the constant α = α(S) is not a rational number. The proof amounts to checking
that some explicit polynomials in Q[t] are not cyclotomic. To conclude, we use a classical result in
the arithmetic theory of linear differential equations [20, 2, 30] about the asymptotic behavior of
an integer-valued, exponentially bounded D-finite sequence, stating that if such a sequence grows
like K · ρn · nα, then α is necessarily a rational number.

In summary, our approach brings together (consequences of) a strong probabilis-
tic result [18] and a strong arithmetic result [20, 30], and demonstrates that this
combination allows for the algorithmic certification of the non-D-finiteness of the
generating series of excursions FS(0, 0, t) in the 51 cases of nonsingular walks with
infinite group.

2.2. Number theory. It is classical that, in many cases, transcendence of a complex function can
be recognized by simply looking at the local behavior around its singularities, or equivalently at
the asymptotic behavior of its Taylor coefficients. This is a consequence of the Newton-Puiseux
theorem and of transfer theorems based on Cauchy’s integral formula, see, e.g., [28, §3] and [29,
Ch. VII.7]. For instance, if (an)n≥0 is a sequence whose asymptotic behaviour has the form K ·ρn ·nα

where either the growth constant ρ is transcendental, or the singular exponent α is irrational or
negative integer, then the generating series A(t) =

∑
n≥0 antn is not algebraic.

A direct application of this criterion to our case allows to show at a glance that the generating
series for excursions in the 51 cases of nonsingular walks with infinite group are transcendental.

Similar (stronger, though less known) results, originating from the arithmetic theory of linear
differential equations, also allow to detect non-D-finiteness of power series by using asymptotics of
their coefficients. This is a consequence of the theory of G-functions [1, 20], introduced by Siegel
almost a century ago in his work on diophantine approximations [51].

We will only use a corollary of this theory, which is well-suited to applications in combinatorics.

Theorem 2. Let (an)n≥0 be an integer-valued sequence whose n-th term an behaves asymptotically
like K · ρn · nα, for some real constant K > 0. If the growth constant ρ is transcendental, or if the
singular exponent α is irrational, then the generating series A(t) =

∑
n≥0 antn is not D-finite.

Proof. This result is more or less classical, but we could not find its exact statement in the literature.
Classical results by Birkhoff-Trjitzinsky [4] and Turrittin [53] imply that if the n-th coefficient of

a D-finite power series is asymptotic to K · ρn · nα, then ρ and α are necessarily algebraic numbers.
The difficult part of Theorem 2 is that irrationality of the singular exponent implies non-D-

finiteness, under the integrality assumption of coefficients. The only proof that we are aware of
uses the fact that any D-finite power series with integer-valued and exponentially bounded coef-
ficients is a G-function. It relies on the combination of several strong arithmetic results. First,
the Chudnovsky-André theorem [15, 1] states that the minimal order linear differential operator
satisfied by a G-function is globally nilpotent. Next, Katz’s theorem [33] shows that the global
nilpotence of a differential operator implies that all of its singular points are regular singular points
with rational exponents.

We refer to [20] for more details on this topic, and to [30] for a brief and elementary account. �

2.3. Probability. Random processes in cones have arisen a great interest in the mathematical
community, as they appear in several distinct domains: quantum random walks, random matri-
ces, noncolliding random walks, etc. Accordingly, many results are available concerning the exit
times from cones of the Brownian motion, and more recently for random walks in discrete time.
For our purpose, the setting is the following: given a sequence (X1(k), X2(k))k≥1 of independent
and identically distributed (i.i.d.) random variables such that for all step s ∈ S and all k ≥ 1,
P[(X1(k), X2(k)) = s] = 1/|S|, the exit time τ is the hitting time of the boundary of the (translated
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positive) quarter plane ({−1} ∪N)2, i.e., τ = inf{n ≥ 1 :
∑n

k=1 X1(k) = −1 or
∑n

k=1 X2(k) = −1}.
Now, the standard relation between probability and counting reads

(1) P

[
n∑

k=1

(X1(k), X2(k)) = (i, j), τ > n

]
=

fS(i, j, n)

|S|n
.

The asymptotic behavior of this probability, as the time n goes to infinity, is called a local limit
theorem. This is now well understood for a very large class of random walks and cones [18, 55]. To
the best of our knowledge, even in the special case of the small step nonsingular random walks in the
quarter plane, the precise asymptotic behavior of (1) was not known before [18]. The corresponding
result is the following.

Theorem 3 ([18]). Let S ⊆ {0, ±1}2 be the step set of a nonsingular walk in the quarter plane N2.
Let en = eSn denote the number of excursions of length n using only steps in S, and let χ = χS

denote the characteristic polynomial
∑

(i,j)∈S xiyj ∈ Q[x, x−1, y, y−1] of the step set S. Then

– if the walk is aperiodic,

en ∼ K · ρn · nα,

– if the walk is periodic (then of period 2),

e2n ∼ K · ρ2n · (2n)α, e2n+1 = 0,

where in both cases, K = KS is a real constant, ρ = ρS is an algebraic number, and α = αS is a
real number such that cos( π

1+α) is an algebraic number. Moreover, the system

(2)
∂χ

∂x
=

∂χ

∂y
= 0

has a unique solution (x0, y0) ∈ R2
>0. It is such that ρ = χ(x0, y0) and α = −1 − π/ arccos(−c),

where c is the algebraic number

(3) c =

∂2χ
∂x∂y√

∂2χ
∂x2 · ∂2χ

∂y2

(x0, y0).

Note that actually, the precise lower and upper bounds for the probability in (1) obtained pre-
viously by Varopoulos [55] (see in particular [55, Theorem 4]) would be sufficient for our needs, as
they already provide the values of ρ and α.

Proof of Theorem 3. This is a rewriting of results in [18]. Consider first an aperiodic step set S

and a random walk with increments (Y1(k), Y2(k))k≥1 such that for all s ∈ S and all k ≥ 1,

(4) P[(Y1(k), Y2(k)) = s] =
exp(〈h, s〉)

R(h)
, R(h) =

∑

s∈S

exp(〈h, s〉),

where h = (h1, h2) is fixed so that E[(Y1(k), Y2(k))] = 0. It turns out that for all nonsingular
cases, this uniquely determines h (the uniqueness follows from the strict convexity of the Laplace
transform R(h), see [57, Ch. 8]). With this notation, [18, Formula (9)] reads

(5) fS(i, j, n) = C((0, 0), (i, j))R(h)nn−p−d/2(1 + o(1)), n → ∞,

where

– C((0, 0), (i, j)) is some constant (in fact, the product of certain harmonic functions evaluated
at the starting and ending points (0, 0) and (i, j));

– d is the dimension of the lattice where the random walk evolves, here equal to 2;
– p = π/ arccos(−r), with r = E[Y1(k)Y2(k)]/

√
E[Y1(k)2] · E[Y2(k)2], see [18, Example 2].
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To prove Theorem 3, we thus have to show that R(h) = χ(x0, y0), and that r = c, with c as in (3).
We start with proving that R(h) = χ(x0, y0). The law of the increments (Y1(k), Y2(k)) of the

random walk has the expectation

E[(Y1(k), Y2(k))] =
1

R(h)

∑

(i,j)∈S

(i, j) exp(〈(h1, h2), (i, j)〉).

Accordingly, E[(Y1(k), Y2(k))] = 0 if and only if
∑

(i,j)∈S

i(exp(h1))i(exp(h2))j =
∑

(i,j)∈S

j(exp(h1))i(exp(h2))j = 0.

This exactly means that (x0, y0) = (exp(h1), exp(h2)) satisfies the system (2), and then that R(h) =
χ(x0, y0).

We now show that r = c, with c as in (3). Using (4) yields

E[Y1(k)Y2(k)]√
E[Y1(k)2] · E[Y2(k)2]

=

∑
(i,j)∈S ij(exp(h1))i(exp(h2))j

√
(
∑

(i,j)∈S i2(exp(h1))i(exp(h2))j) · (
∑

(i,j)∈S j2(exp(h1))i(exp(h2))j)
.

The numerator above is precisely x0y0
∂2χ

∂x∂y (x0, y0). As for the denominator, we notice that

∂2χ

∂x2
(x0, y0) =

∑

(i,j)∈S

i(i − 1)xi−2
0 yj

0 =
1

x2
0

∑

(i,j)∈S

i(i − 1)xi
0yj

0 =
1

x2
0

∑

(i,j)∈S

i2xi
0yj

0,

where the last equality comes from ∂χ
∂x (x0, y0) = 0. A similar computation for ∂2χ

∂y2 (x0, y0) shows

that r = c.
We now consider the periodic step sets (they are marked with a star in Tables 1 and 2). By

examining the different cases, it is clear that the period is necessarily 2. In particular, we have
e2n+1 = 0 for all n ≥ 0, and (5) does not hold anymore. However, a slight adaptation of the local
limit theorem [18, Theorem 6] (from which the asymptotic formula (5) is a simple consequence)
gives

fS(i, j, 2n) = C̃((0, 0), (i, j))R(h)2n(2n)−p−d/2(1 + o(1)), n → ∞,

where C̃((0, 0), (i, j)) is some constant (different from that in (5)). The proof of Theorem 3 is
complete. �

2.4. Algorithmic irrationality proof. Let S ⊆ {0, ±1}2 be one of the 51 nonsingular step sets
with infinite group (see Table 1 in Appendix 3). By Theorem 3, the singular exponent α in the
asymptotic expansion of the excursion sequence (eSn )n≥0 is equal to −1 − π/ arccos(−c), where c
is an algebraic number. Therefore, if arccos(c)/π is an irrational number, then by Theorem 2, the
generating series FS(0, 0, t) is not D-finite.

We now explain how, starting from the step set S one can algorithmically prove that arccos(c)/π
is irrational. This effective proof decomposes into two main steps, solved by two different algorithms.
The first algorithm computes the minimal polynomial µc(t) ∈ Q[t] of c starting from S. The second
one performs computations on µc(t) showing that arccos(c)/π is irrational.

2.4.1. Computing the minimal polynomial of the correlation coefficient. Given χ = χS the char-
acteristic polynomial of the step set S, Theorem 3 shows that the exponential growth ρ and the
correlation coefficient c are algebraic numbers, for which algebraic equations can be obtained by
eliminating x and y from the equations

∂χ

∂x
= 0,

∂χ

∂y
= 0, ρ − χ = 0, c2 −

(
∂2χ

∂x∂y

)2

∂2χ
∂x2 · ∂2χ

∂y2

= 0.
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This elimination is a routine task in effective algebraic geometry, usually performed with Gröbner
bases for lexicographic or elimination orders [17]. For any zero (x0, y0) of the system ∂χ

∂x (x0, y0) =
∂χ
∂y (x0, y0) = 0 and any polynomials P (x, y) and Q(x, y) such that Q 6∈ I, the algebraic num-

ber P (x0, y0)/Q(x0, y0) is a root of a generator of the ideal I + 〈P (x, y) − tQ(x, y)〉 ∩ Q[t].
This is summarized in the following algorithm.

Input: A step set S satisfying the assumptions of Theorem 3
Output: The minimal polynomials of ρ and c defined in Theorem 3

(1) Set χ(x, y) :=
∑

(i,j)∈S xiyj, and compute χx := numer(∂χ
∂x ), χy := numer(∂χ

∂y ).

(2) Compute the Gröbner basis of the ideal generated by (χx, χy, numer(t − χ)) in Q[x, y, t] for
a term order that eliminates x and y. Isolate the unique polynomial in this basis that is
free of x and y, factorize it, and identify its factor µρ that annihilates ρ.

(3) Compute the polynomial

P (x, y, t) := numer


t2 −

(
∂2χ

∂x∂y

)2

∂2χ
∂x2 · ∂2χ

∂y2




and eliminate x and y by computing a Gröbner basis of (χx, χy, P ) for a term order that
eliminates x and y. Isolate the unique polynomial in this basis that is free of x and y,
factorize it, and identify its factor µc that annihilates c.

Table 2 in Appendix 3 displays the minimal polynomials of ρ and of c obtained using this
algorithm.

2.4.2. Proving that the arccosine of the correlation coefficient is not commensurable with π. Given
the minimal polynomial µc of the correlation coefficient c, we now want to check that arccos(c)/π is
irrational. General classification results exist, e.g., [54], but they are not sufficient for our purpose.
Instead, we rather prove that arccos(c)/π is irrational in an algorithmic way. This is based on the
observation that if arccos(c)/π were rational, then c would be of the form (x + 1/x)/2 with x a

root of unity. This implies that the numerator of the rational function µc(
x2+1

2x ) would possess a

root which is a root of unity. In other words, the polynomial R(x) = xdeg µcµc(
x2+1

2x ) would be
divisible by a cyclotomic polynomial. This possibility can be discarded by analyzing the minimal
polynomials µc displayed in Table 2 in Appendix 3.

Indeed, in all the 51 cases, the polynomial R(x) is irreducible and has degree 2 deg(µc), thus at
most 28. Now, it is known that if the cyclotomic polynomial ΦN has degree at most 30, then N is at
most 150 [50, Theorem 15], and the coefficients of ΦN belong to the set {−2, −1, 0, 1, 2} [39]. Com-
puting R in the 51 cases shows that it has at least one coefficient of absolute value greater than 3.
This allows to conclude that R is not a cyclotomic polynomial, and therefore that arccos(c)/π is
irrational, and finishes the proof of Theorem 1.

2.5. Example. We now illustrate the systematic nature of our algorithms on Example 23 of Ta-
ble 1, i.e., walks with step set S = {(−1, 0), (0, 1), (1, 0), (1, −1), (0, −1)}. For ease of use, we give
explicit Maple instructions.

Step 1. The characteristic polynomial of the step set is

S:=[[-1,0],[0,1],[1,0],[1,-1],[0,-1]]:

chi:=add(x^s[1]*y^s[2],s=S);
7



χ :=
1

x
+

1

y
+ x + y +

x

y
,

whose derivatives have numerators

chi_x:=numer(diff(chi,x));chi_y:=numer(diff(chi,y));

(6) χx := x2 + x2y − y, χy := y2 − x − 1.

These define the system (2).

Step 2. We now compute a polynomial that vanishes at ρ = χ(x0, y0) when (x0, y0) is a solution
of (6). To this aim, we eliminate x and y in {χx, χy, numer(χ) − tdenom(χ)} by a Gröbner basis
computation using an elimination order with (x, y) > t. In Maple, this is provided by the command

G:=Groebner[Basis]([chi_x,chi_y,numer(t-chi)],lexdeg([x,y],[t])):

which returns four polynomials, only one of which is free of x and y, namely

p:=factor(op(remove(has,G,{x,y})));

p := (t + 1)(t3 + t2 − 18t − 43).

Since we know that ρ > 0, we identify its minimal polynomial as µρ = t3 + t2 − 18t − 43, which
gives the entry in Column 3 of Table 2. The numerical value for ρ in Table 1 is given by

fsolve(p,t,0..infinity);

4.729031538.

Step 3. Next, we obtain a polynomial which vanishes at c by a very similar computation:

G:=Groebner[Basis]([chi_x,chi_y,

numer(t^2-diff(chi,x,y)^2/diff(chi,x,x)/diff(chi,y,y))],lexdeg([x,y],[t]));

Again, this command returns four polynomials, with one of them free of x and y, namely

p:=factor(op(remove(has,G,{x,y})));

p := (4t2 + 1)(8t3 + 8t2 + 6t + 1)(8t3 − 8t2 + 6t − 1).

This polynomial has only two real roots, ±c. Since c < 0, we identify its minimal polynomial
as µc = 8t3 + 8t2 + 6t + 1, which gives the entry in Column 4 of Table 2. Again, the numerical
value for α in Table 1 is given by

evalf(-1-Pi/arccos(-fsolve(p,t,-infinity..0)));

−3.320191962.

Step 4. To conclude, we compute the polynomial

R(x) = x3µc

(
x2 + 1

2x

)
= x6 + 2x5 + 6x4 + 5x3 + 6x2 + 2x + 1.

This polynomial does not have any root that is a root of unity, since it is irreducible and not
cyclotomic:

irreduc(R),numtheory[iscyclotomic](R,x);

true, false

This completes the proof that the generating function for this walk is not D-finite.

2.6. Open problems. As we mentioned in Section 2.1, our approach brings together a strong
arithmetic result (Theorem 2) and a strong probabilistic result (Theorem 3). It therefore appears
natural to search for alternative simpler proofs of these results.

8



Proving that α is transcendental. In Section 2.4, we are able to prove that for the 51 nonsingular
models, the exponent α in the asymptotic expansion of the excursion sequence is irrational. It is
worth mentioning that if it was possible to prove that α is not only irrational, but also transcen-
dental, then Theorem 2 would not be needed.

Simpler proof of Theorem 2. In Section 2.2, we proposed a proof of Theorem 2 based on several
strong results from arithmetic theory [15, 1, 33, 20]. It would be interesting to know whether
Theorem 2 admits a simpler, direct proof.

Combinatorial proof of Theorem 3. Last but not least, finding a combinatorial proof of Theorem 3
appears as an interesting challenge.

Acknowledgements. We wish to thank Tanguy Rivoal, Denis Denisov and Vitali Wachtel for
stimulating exchanges. Work of the first and the third authors was supported in part by the
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3. Appendix

Table 1 Non-singular walks in the quarter plane with an infinite group, and the asymptotics of
their excursions. The labels used in the columns “Tag” correspond to those from Table 4 in [14].
Entries marked with a star correspond to periodic walks.

Tag Steps First terms Asymptotics Tag Steps First terms Asymptotics

3 �✠❄❅
✲❅✻�

1, 0, 1, 2, 2, 13, 21, 67, 231
3.799605n

n2.610604
4 �✠❅❘

✲❅✻�
1, 0, 0, 2, 2, 0, 16, 44, 28

3.608079n

n2.720448

5 �✠❅
✲❅✻�✒

1, 0, 1, 2, 2, 14, 21, 76, 252
3.799605n

n2.318862
6 �❄❅

✛❅✻�✒
1, 0, 1, 2, 2, 13, 21, 67, 231

3.799605n

n2.610604

7⋆ �✠❅❘
❅✻�✒

1, 0, 1, 0, 4, 0, 29, 0, 230
3.800378n

n2.521116
8 �❅❘

✛✲❅✻�
1, 0, 1, 1, 2, 7, 10, 38, 89

3.799605n

n3.637724

9 �❄❅❘
✛❅✻�

1, 0, 1, 1, 2, 7, 10, 38, 89
3.799605n

n3.637724
10 �✠❅❘

✛❅✻�
1, 0, 0, 1, 2, 0, 5, 26, 28

3.608079n

n3.388025

11⋆ �✠❅❘
❅■✻�

1, 0, 0, 0, 2, 0, 6, 0, 42
3.800378n

n3.918957
12 �❅❘

✛❅■✻�
1, 0, 0, 1, 0, 1, 5, 1, 18

3.799605n

n5.136154

14 �❅❘
✛❅✻�✒

1, 0, 0, 1, 2, 0, 5, 26, 28
3.608079n

n3.388025
16 �✠❄❅

✛❅�✒
1, 0, 1, 2, 2, 14, 21, 76, 252

3.799605n

n2.318862

17⋆ �✠❄❅
❅■�✒

1, 0, 1, 0, 4, 0, 29, 0, 230
3.800378n

n2.521116
18 �❄❅

✛❅■�✒
1, 0, 0, 2, 2, 0, 16, 44, 28

3.608079n

n2.720448

19⋆ �❄❅❘
❅■�✒

1, 0, 0, 0, 2, 0, 6, 0, 42
3.800378n

n3.918957
20 �✠❅

✲❅■✻�✒
1, 0, 1, 2, 4, 14, 45, 120, 468

4.372923n

n2.482876

21 �❄❅
✲❅■✻�✒

1, 0, 1, 1, 4, 7, 25, 64, 201
4.214757n

n3.347502
23 �❄❅❘

✛✲❅✻�
1, 0, 2, 1, 10, 14, 75, 178, 738

4.729032n

n3.320192

24 �✠❄❅
✛✲❅✻�

1, 0, 2, 2, 10, 26, 86, 312, 1022
4.729032n

n2.757466
25 �✠❅

✛✲❅✻�✒
1, 0, 2, 2, 11, 27, 101, 348, 1237

4.729032n

n2.397625

26 �✠❄❅
✛❅✻�✒

1, 0, 2, 2, 11, 27, 101, 348, 1237
4.729032n

n2.397625
27⋆ �✠❄❅

❅■✻�✒
1, 0, 2, 0, 13, 0, 124, 0, 1427

4.569086n

n2.503534

28 �❄❅
✛❅■✻�✒

1, 0, 1, 2, 4, 13, 36, 111, 343
4.214757n

n2.742114
29⋆ �❄❅❘

❅■✻�✒
1, 0, 1, 0, 5, 0, 35, 0, 313

4.569086n

n3.985964

30 �✠❅❘
✛❅✻�✒

1, 0, 1, 1, 6, 17, 58, 202, 749
5n

n2.722859
31 �❅❘

✛❅■✻�✒
1, 0, 0, 1, 2, 1, 11, 27, 60

4.372923n

n4.070925

32⋆ �✠❄❅❘
❅✻�✒

1, 0, 2, 0, 13, 0, 124, 0, 1427
4.569086n

n2.503534
33 �✠❄❅❘

✛❅✻�
1, 0, 1, 1, 4, 7, 25, 64, 201

4.214757n

n3.347502

34⋆ �✠❄❅❘
❅■✻�

1, 0, 1, 0, 5, 0, 35, 0, 313
4.569086n

n3.985964
35 �❄❅❘

✛❅■✻�
1, 0, 1, 1, 3, 8, 19, 65, 177

4.729032n

n4.514931

36 �✠❅❘
✛❅■✻�

1, 0, 0, 1, 2, 1, 11, 27, 60
4.372923n

n4.070925
37 �✠❄❅❘

✲❅✻�
1, 0, 1, 2, 4, 13, 36, 111, 343

4.214757n

n2.742114

38 �❄❅
✛✲❅✻�✒

1, 0, 2, 2, 10, 26, 86, 312, 1022
4.729032n

n2.757466
39 �❄❅❘

✲❅■✻�
1, 0, 1, 1, 3, 8, 19, 65, 177

4.729032n

n4.514931

40 �✠❅❘
✲❅■✻�

1, 0, 0, 2, 4, 8, 28, 108, 372
5n

n3.383396
41 �✠❄❅

✛❅■�✒
1, 0, 1, 2, 4, 14, 45, 120, 468

4.372923n

n2.482876

42 �❄❅❘
✛❅■�✒

1, 0, 0, 2, 4, 8, 28, 108, 372
5n

n3.383396
43 �✠❄❅❘

✲❅✻�✒
1, 0, 2, 2, 13, 27, 140, 392, 1882

5.064419n

n2.491053

44 �✠❅❘
✛✲❅✻�✒

1, 0, 2, 3, 15, 51, 208, 893, 3841
5.891838n

n2.679783
45 �❅❘

✛✲❅■✻�✒
1, 0, 1, 1, 5, 8, 40, 91, 406

5.064419n

n4.036441

46 �✠❅❘
✲❅■✻�✒

1, 0, 1, 2, 8, 22, 101, 364, 1618
5.799605n

n2.959600
47 �✠❅❘

✛✲❅■✻�
1, 0, 1, 3, 7, 29, 101, 404, 1657

5.891838n

n3.471058
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Tag Steps First terms Asymptotics Tag Steps First terms Asymptotics

48 �✠❄❅❘
✛❅■✻�

1, 0, 1, 1, 5, 8, 40, 91, 406
5.064419n

n4.036441
49 �✠❄❅

✛❅■✻�✒
1, 0, 2, 2, 13, 27, 140, 392, 1882

5.064419n

n2.491053

50 �✠❄❅❘
✛❅✻�✒

1, 0, 2, 3, 15, 51, 208, 893, 3841
5.891838n

n2.679783
51 �❄❅❘

✛❅■✻�✒
1, 0, 1, 3, 7, 29, 101, 404, 1657

5.891838n

n3.471058

52 �✠❅❘
✛❅■✻�✒

1, 0, 1, 1, 8, 18, 90, 301, 1413
5.799605n

n3.042101
53 �✠❄❅❘

✛❅■�✒
1, 0, 1, 2, 8, 22, 101, 364, 1618

5.799605n

n2.959600

54 �✠❄❅
✛✲❅■✻�✒

1, 0, 3, 5, 30, 111, 548, 2586, 13087
6.729032n

n2.667986
55 �✠❄❅❘

✛✲❅■✻�
1, 0, 2, 4, 16, 64, 266, 1210, 5630

6.729032n

n3.497037

56 �❄❅❘
✛✲❅■✻�✒

1, 0, 2, 4, 16, 64, 266, 1210, 5630
6.729032n

n3.497037

Table 2 Non-singular walks in the quarter plane with an infinite group, and the minimal polyno-
mials of the growth constants ρ and of the correlation coefficients c.

Tag Steps Minimal polynomial µρ of ρ Minimal polynomial µc of c = − cos( π

1+α
)

3, 6 �✠❄❅
✲❅✻�

, �❄❅
✛❅✻�✒

t4 + t3 − 8t2 − 36t − 11 t8 + 1

4
t6 − 3

16
t4 + 3

64
t2 − 1

256

8, 9 �❅❘
✛✲❅✻�

, �❄❅❘
✛❅✻�

t8 + 1

4
t6 − 3

16
t4 + 3

64
t2 − 1

256

5, 16 �✠❅
✲❅✻�✒

, �✠❄❅
✛❅�✒

t4 − 9

2
t3 + 27

4
t2 − 35

8
t + 17

16

12 �❅❘
✛❅■✻�

t4 + 9

2
t3 + 27

4
t2 + 35

8
t + 17

16

7⋆, 17⋆ �✠❅❘
❅✻�✒

, �✠❄❅
❅■�✒

t6 − 11t4 − 32t2 − 256 t6 + 3

4
t4 + 2t2 − 1

2

11⋆, 19⋆ �✠❅❘
❅■✻�

, �❄❅❘
❅■�✒

t6 + 3

4
t4 + 2t2 − 1

2

4, 18 �✠❅❘
✲❅✻�

, �❄❅
✛❅■�✒

t5 + t4 + t3 − 30t2 − 96t − 91 t10 + 2t8 + t6 − 1

64
t4 + 3

256
t2 − 1

1024

10, 14 �✠❅❘
✛❅✻�

, �❅❘
✛❅✻�✒

t10 + 2t8 + t6 − 1

64
t4 + 3

256
t2 − 1

1024

20, 41 �✠❅
✲❅■✻�✒

, �✠❄❅
✛❅■�✒

t5 − 2t4 − 4t3 − 31t2 + 23t − 41 t10 + t8 + 157

32
t6 + 145

128
t4 + 1681

512
t2 − 2209

2048

31, 36 �❅❘
✛❅■✻�✒

, �✠❅❘
✛❅■✻�

t10 + t8 + 157

32
t6 + 145

128
t4 + 1681

512
t2 − 2209

2048

21, 33 �❄❅
✲❅■✻�✒

, �✠❄❅❘
✛❅✻�

t5 + 2t4 − 7t3 − 46t2 − 116t − 131 t10 + 3

2
t8 + 13

16
t6 + 5

64
t4 + 3

256
t2 − 1

1024

28, 37 �❄❅
✛❅■✻�✒

, �✠❄❅❘
✲❅✻�

t10 + 3

2
t8 + 13

16
t6 + 5

64
t4 + 3

256
t2 − 1

1024

23 �❄❅❘
✛✲❅✻�

t3 + t2 − 18t − 43 t3 + t2 + 3

4
t + 1

8

24, 38 �✠❄❅
✛✲❅✻�

, �❄❅
✛✲❅✻�✒

t3 − t2 + 3

4
t − 1

8

25, 26 �✠❅
✛✲❅✻�✒

, �✠❄❅
✛❅✻�✒

t6 − t4 + 7

16
t2 − 5

64

35, 39 �❄❅❘
✛❅■✻�

, �❄❅❘
✲❅■✻�

t6 − t4 + 7

16
t2 − 5

64

27⋆, 32⋆ �✠❄❅
❅■✻�✒

, �✠❄❅❘
❅✻�✒

t6 − 20t4 − 16t2 − 48 t6 + 2t4 + 5

2
t2 − 3

4

29⋆, 34⋆ �❄❅❘
❅■✻�✒

, �✠❄❅❘
❅■✻�

t6 + 2t4 + 5

2
t2 −

3

4
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Tag Steps Minimal polynomial µρ of ρ Minimal polynomial µc of c = − cos( π

1+α
)

30 �✠❅❘
✛❅✻�✒

t − 5 t − 1

4

40, 42 �✠❅❘
✲❅■✻�

, �❄❅❘
✛❅■�✒

t + 1

4

43, 49 �✠❄❅❘
✲❅✻�✒

, �✠❄❅
✛❅■✻�✒

t6 + 2t5 − 18t4 − 67t3 − 108t2 − 40t − 19 t12 + 11

4
t10 + 107

16
t8 + 145

32
t6 + 455

128
t4 − 2859

1024
t2 + 1521

4096

45, 48 �❅❘
✛✲❅■✻�✒

, �✠❄❅❘
✛❅■✻�

t12 + 11

4
t10 + 107

16
t8 + 145

32
t6 + 455

128
t4 − 2859

1024
t2 + 1521

4096

44, 50 �✠❅❘
✛✲❅✻�✒

, �✠❄❅❘
✛❅✻�✒

t7 + 3t6 − 18t5 − 127t4 − 328t3 − 560t2 − 704t − 448 t14 + 23

4
t12 + 25

2
t10 + 971

64
t8 + 421

32
t6 + 307

64
t4 + 107

64
t2 − 49

256

47, 51 �✠❅❘
✛✲❅■✻�

, �❄❅❘
✛❅■✻�✒

t14 + 23

4
t12 + 25

2
t10 + 971

64
t8 + 421

32
t6 + 307

64
t4 + 107

64
t2 −

49

256

46, 53 �✠❅❘
✲❅■✻�✒

, �✠❄❅❘
✛❅■�✒

t4 − 7t3 + 10t2 − 24t + 37 t4 − 1

2
t3 + 55

4
t2 − 19

8
t + 1

16

52 �✠❅❘
✛❅■✻�✒

t4 + 1

2
t3 + 55

4
t2 + 19

8
t + 1

16

54 �✠❄❅
✛✲❅■✻�✒

t3 − 5t2 − 10t − 11 t3 + 11

4
t − 7

8

55, 56 �✠❄❅❘
✛✲❅■✻�

, �❄❅❘
✛✲❅■✻�✒

t3 + 11

4
t + 7

8
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