The Logvinenko-Sereda Theorem for the Fourier-Bessel transform - Archive ouverte HAL
Article Dans Une Revue Integral Transforms and Special Functions Année : 2013

The Logvinenko-Sereda Theorem for the Fourier-Bessel transform

Résumé

The aim of this paper is to establish an analogue of Logvinenko-Sereda's theorem for the Fourier-Bessel transform (or Hankel transform) $\ff_\alpha$ of order $\alpha>-1/2$. Roughly speaking, if we denote by $PW_\alpha(b)$ the Paley-Wiener space of $L^2$-functions with Fourier-Bessel transform supported in $[0,b]$, then we show that the restriction map $f\to f|_\Omega$ is essentially invertible on $PW_\alpha(b)$ if and only if $\Omega$ is sufficiently dense. Moreover, we give an estimate of the norm of the inverse map. As a side result we prove a Bernstein type inequality for the Fourier-Bessel transform.
Fichier principal
Vignette du fichier
L-S120424.pdf (201.08 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00696009 , version 1 (10-05-2012)

Identifiants

Citer

Saifallah Ghobber, Philippe Jaming. The Logvinenko-Sereda Theorem for the Fourier-Bessel transform. Integral Transforms and Special Functions, 2013, 24, pp.470-484. ⟨hal-00696009⟩
331 Consultations
690 Téléchargements

Altmetric

Partager

More