Optimal plate spacing for mixed convection from an array of vertical isothermal plates - Archive ouverte HAL Access content directly
Journal Articles International Journal of Thermal Sciences Year : 2012

Optimal plate spacing for mixed convection from an array of vertical isothermal plates

H. Sun
  • Function : Author
TCM
R. Li
  • Function : Author
TCM
Eric Chénier
TCM
Guy Lauriat
  • Function : Author
  • PersonId : 926802
TCM

Abstract

Numerical simulations of mixed convection of air between vertical isothermal surfaces were conducted in order to determine the optimum spacing corresponding to the peak heat flux transferred from an array of isothermal, parallel plates cooled by mixed convection. Comparisons between approximate analytical solutions for natural and forced convection are first discussed. It is shown that the agreement is fairly good. From the computations carried out for aiding mixed convection by assuming a pressure drop at the outlet section rather than a constant flow rate, it is numerically predicted that the optimum spacing is smaller than those for pure natural or pure forced convection. This spacing is determined according to the pressure drop. As a sample, we considered an array of 10 cm -height, isothermal surfaces at temperature T-h = 340 K with air as the working fluid entering into the channels at T-0 = 300 K. The increases in heat flux corresponding to the optimal spacing are discussed for outlet pressure drops ranging from -0.1 Pa to -1 Pa. Such a range covers the entire laminar mixed convection regime for this specific application.
Fichier principal
Vignette du fichier
article-ijts-conv-mixte-new5.pdf (643.74 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-00692607 , version 1 (03-06-2017)

Identifiers

Cite

H. Sun, R. Li, Eric Chénier, Guy Lauriat, J. Padet. Optimal plate spacing for mixed convection from an array of vertical isothermal plates. International Journal of Thermal Sciences, 2012, 55, pp.16--30. ⟨10.1016/j.ijthermalsci.2011.12.013⟩. ⟨hal-00692607⟩
96 View
253 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More