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Abstract

Numerical simulations of mixed convection of air between vertical isothermal surfaces were

conducted in order to determine the optimum spacing corresponding to the peak heat flux

transferred from an array of isothermal, parallel plates cooled by mixed convection. Com-

parisons between approximate analytical solutions for natural and forced convection are first

discussed. It is shown that the agreement is fairly good. From the computations carried out

for aiding mixed convection by assuming a pressure drop at the outlet section rather than

a constant flow rate, it is numerically predicted that the optimum spacing is smaller than

those for pure natural or pure forced convection. This spacing is determined according to

the pressure drop. As a sample, we considered an array of 10 cm-height, isothermal surfaces

at temperature Th = 340 K with air as the working fluid entering into the channels at

T0 = 300 K. The increases in heat flux corresponding to the optimal spacing are discussed

for outlet pressure drops ranging from −0.1 Pa to −1 Pa. Such a range covers the entire

mixed convection regime for this specific application.
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Nomenclature

a thermal diffusivity [m2 s−1]

A aspect ratio, A = H/D

Be pressure difference number, Be = ∆pH2/aoµ0

cp specific heat [J K−1 kg−1]

d deformation velocity tensor [s−1]

D plate spacing [m]

Dh hydraulic diameter, Dh = 2D [m]

Fr Froude number, Fr = w2
0/gDh

g gravitational acceleration [m s−2]

GrD Grashof number based on D, GrD = gβ0∆TD3/ν2
0)

Gv volumetric flow rate, Gv = w0Sc [m
3s−1]

h heat transfer coefficient [W m−2K−1]

H channel height [m]

k thermal conductivity [W m−1 K−1]

L channel length in the direction perpendicular to Fig.1 [m]

ṁ mass flow rate [kg s−1]

n number of channel

Nu2w mean Nusselt number based on the wall heat fluxes

Nuen mean Nusselt number based on the enthalpy flux

nx, nz numbers of grid points in x− and z−directions

p pressure [Pa]

pm motion pressure [Pa]

ps pressure at the outlet section [Pa]

p∗ dimensionless pressure, P = p/(ρ0w
2
0)

Pr Prandtl number, Pr = ν0/a0

Q heat flux, [W ]

Qa, Qb analytical expressions for the heat flux, [W ]
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Q2w convective heat flux along the two vertical channel walls (Eq. 13), [W ]

Qen enthalpy heat flux (Eq. 14), [W ]

Qcond axial difusion flux (Eq. 16), [W ]

RaH Rayleigh number based on H, RaH = gβ∆TH3/a0ν0

Re Reynolds number based on Dh, Re = w0Dh/ν0

Ri Richardson number, Ri = Gr/Re2

Sc area of the channel cross section, Sc = DL [m2]

ST area of the overall heated surfaces, ST = 2n(HL) [m2]

t time [s]

T temperature [K]

u, w velocity components [m s−1]

vref reference velocity for natural convection, vref = ν0/Dh [m s−1]

Wm pumping power [W ]

x, z coordinates [m]

Greeks

α order of consistency of the numerical scheme

β thermal coefficient of volumetric expansion, β = 1/T0 [K−1]

∆T temperature difference, ∆T = (Th − T0) [K]

∆p pressure difference, ∆p = −1
2
ρ0w

2 − ps [Pa]

η efficiency (Eq. 44)

ηb mixed convection group [36], (RaH/Be)1/4

ν kinematic viscosity [m2 s−1]

ρ density [kg m−3]

θ dimensionless temperature ratio, θ = (T − T0)/∆T

τ dimensionless time, τ = w0t/(ReDh)

Subscripts

a, b analytical solutions
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cond conduction

en enthalpy

h hot wall

H quantity based on channel height

nc natural convection

opt optimum

w wall

0 inlet section

2w two walls

Superscripts

− averaged quantity

∗ dimensionless quantity
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1. Introduction

Mixed convection occurs when both natural convection and forced convection heat trans-

fer mechanisms interact. In vertical and inclined parallel-plate channels the bulk flow can

be either upward or downward. The thermal and/or solutal buoyancy forces may be either

assisting or opposing the forced flow according to the forced flow direction relative to gravity,

and depending on the thermal and/or solutal conditions at both walls. The four important

parameters are the channel aspect ratio, A = H/D, the Reynolds, Grashof and Prandtl

numbers, Re, Gr and Pr, respectively. The relative contributions of forced and natural

convection effects are often discussed in term of the Richardson number, Ri = Gr/Re2, or

in term of RiRe= Gr/Re. It should be noted here that the choice of the appropriate length

scale for the buoyancy term (i.e. the length in the Grashof number) is not obvious while it

should be the hydraulic diameter for the Reynolds number.

In the last three decades, mixed convection through parallel-plate channels and in ducts

with various cross-sections has been extensively studied both for vertical and inclined config-

urations. However, reference results for mixed convection are relatively sparse in comparison

with those for forced or natural convection flows in ducts. That is due to the large increase

in the complexity and numbers of possible flow configurations occurring in practical appli-

cations: cooling of electronic equipment, solar energy collectors, compact heat exchangers

and many others [1].

Most of the theoretical studies on laminar mixed convection in vertical, parallel-plate

channels were for thermal conditions of uniform wall heat fluxes or uniform wall tempera-

tures, the heating of the two walls being either identical or asymmetric. Analytical methods

for fully developed flows were first derived by Aung and Worku [2–4]. This problem was

revisited recently by Padet et al. [5–7] who determined relevant criteria for the transitions

from natural to mixed convection and from mixed to forced convection. A combined per-

turbation and similarity approach was used by Yao [8] for solving the governing equations
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in the entry region for conditions of constant wall temperature and constant wall heat flux.

Purely numerical solutions were obtained by Cheng et al. [9] who suggested modifications

to the parabolic model (based on negligible streamwise diffusion terms in comparison with

spanwise diffusion terms) and, a new algorithm for the analysis of buoyancy-induced flow

reversal within vertical channels was introduced. Numerical solutions based on a fully el-

liptic formulation are only few. To our best knowledge, the first numerical study on mixed

convection based on the full elliptic formulation was carried out by Jeng et al. [10] who

showed the limitations of the parabolic model for low Reynolds number flows. Recently,

flow reversal and flow recirculations were anew considered in details by Yang et al. [11]

and by Desrayaud and Lauriat [12]. Only few numerical studies were conducted by using

the elliptic formulation. The reason is that the writing of appropriate boundary conditions

at the inlet and outlet sections is difficult to handle: it is the mathematical backbone of

such approaches. The main interest in considering an elliptic formulation is that the axial

conduction may be accounted for, which is of importance for low mass flow rate.

In this work, we are considering only mixed convection with buoyancy and pressure forces

acting in the same direction: this case is generally termed as ”assisting mixed convection”.

The first question to be raised is: which force assists the other? Most papers published in

the current literature considers that natural convection assists forced convection, i.e. the

flow rate is fixed and the effect of natural convection on the heat transfer rate is examined.

We are solving the problem from a different viewpoint: forced convection generated by an

additional pressure difference is aiding natural convection, as it is mostly the case for the

cooling of electronic equipments or in the case of severe nuclear accident.

Amongst the difficulties underlying a general description of thermal mixed convection

(the thermosolutal case [13–15] being out the scope of this work) are the occurrences of

flow reversal and flow recirculations, the origins of which are fully different although there

exists some confusion into the literature. On one hand, Aung and Worku [2] analytically

demonstrated that flow reversal is impossible in the case of fully developed flow for sym-
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metrically heated channels at constant temperature. On the other hand, Desrayaud and

Lauriat [12] showed numerically the occurrence of flow recirculations in the entrance region

for the constant temperature case at relatively low Reynolds number. Linear stability anal-

ysis of laminar mixed convection in a vertical channel with constant heat flux imposed on

the walls has been investigated by Chen and Chung [16]. They demonstrated that the fully

developed flow is highly unstable, the critical Grashof number being strongly dependent

on the Reynolds and Prandtl numbers. Non-linear local analysis [17] gave results in good

agreement with those of Chen and Chung [16].

Flow reversals in vertical parallel-plate channels and in circular pipe have been quite

extensively studied, both for developing and fully developed flows, experimentally as well

as theoretically. The experimental works performed by Morton et al. [18] and Ingham et

al. [19] for mixed-convection water flows in vertical pipes and relatively small Reynolds

numbers have clearly shown the occurrence of flow reversal. Less experiments were devoted

to parallel-plate channels. Flow reversal and its structure have been visualized by Gau and

coworkers [20–22] for both assisted and opposed convection. Its occurrence originates from

asymmetric heating conditions. Flow reversal can be easily predicted, just by using the

simplest one-dimensional form of the governing equations [2, 7].

Flow recirculations are caused by an imposed flow rate and are predicted in the entrance

section experimentally [23] as well as numerically when using an elliptical formulation [12].

The existence of a flow recirculation bubble is caused by increases in upstream velocities

close to the heated walls. This increases is due the decrease in density in conjunction with

the largest gravitational force that produces acceleration of the fluid in regions next to the

walls where maximums of axial velocities are observed. To satisfy mass conservation, fluid is

drawn downward from the centerline region when the flow rate is kept fixed, independently

of the magnitude of the buoyancy force. These recirculations are thus directly linked to the

inlet flow boundary conditions.
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As depicted above, a general study of mixed convection is beyond the scope of this pa-

per. Therefore, we are just concentrating on the optimal spacing between isothermal plates

arranged in an array and cooled by mixed convection. The optimal spacing for the cooling

of an array of heated surfaces by natural or by forced convection is a problem that has

attracted many experimental and numerical studies since the famous work by Elenbass [24].

This spacing corresponds to the peak heat flux that can be transferred by providing the

surface of n perfectly conducting fins.

When the parallel plates are cooled by natural convection, Bar-Cohen and Rohsenow

[25] have demonstrated that the optimum spacing can be determined through an analytic

optimization procedure based on maximizing the total heat transfer per unit volume. This

method permits to find optimum spacings for various thermal boundary conditions at the

walls. At the same time, Bejan [26], suggested that the optimal spacing can be determined

by the intersection of two asymptotic solutions varying as D−1 or D2 (the foundation of the

theory of the intersection of asymptotes, followed by the Constructal Theory [27],[28]). The

first solution is based on the assumption that the thicknesses of boundary layers growing

on vertical surfaces are much lower than D/2 at the exit section (z = H). On the other

hand, the second solution assumes that the temperature of the coolant is uniformly equal

to the temperature of the walls at the exit section. Later on, the optimum plate spacing

for natural convection between heated vertical parallel plates was numerically analysed by

Anand et al. [29] for channels subjected to uniform wall temperature and uniform heat flux

heating conditions. Boundary layers approximations were introduced and calculations were

conducted for various asymmetric heating parameters.

For forced convection Bejan and Scuibba [30] determined an optimal spacing, intersection

of two asymptotic solutions in D−2/3 when the distance between the walls is large enough

and in D2 when they are sufficiently close for the occurrence of a short thermal entry length.

The optimal spacing of a stack of isothermal parallel boards cooled by forced convection was

studied numerically and theoretically by Mereu et al. [31] according to the flow generation:
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fixed pressure drop (∆p), mass flow rate (ṁ), or pumping power. For each of these cases,

the optimal spacing and maximum overall thermal conductance of the stack were correlated

in dimensionless form. It was shown that neither the constant ∆p model nor the constant

ṁ model is appropriate when the stack is cooled by a stream created by a fan or a pump.

Campo [32] complemented the study conducted by Bejan and Scubbia [30] by proposing an

order-of-magnitude analysis for channels with the plates heated with uniform heat fluxes.

To this end, he introduced a new characteristic plate temperature based on the mean value

of the axially variable temperature difference between plate and free-stream temperatures.

In many applications, especially for electronic components, cooling is performed by mixed

convection in order to increase the efficiency of the fins while using low power fans. Laminar

mixed convection between a series of parallel plates with planar heat sources was numeri-

cally investigated by Watson et al. [33] with conjugate conduction effects included. A fully

elliptic formulation and extensions above the plates were considered for various plate-to-

fluid conductivity ratios. The thermodynamic optimization of cooling techniques for heat

generating devices were examined in Bejan and Ledezma [34] and da Silva et Bejan [35] by

considering five models for applications above and below room temperature. They showed,

in particular, that the minimum fan power requirement for forced convection is minimum

when the heat transfer area is optimized according to the relation A = 2Af/St, where St

is the Stanton number and Af the flow cross-sectional area. For natural convection cooling,

this optimization rule determines the maximum possible heat generation rate.

A single correlation for optimal spacing and maximal heat transfer rate density for mixed

convection as well as for natural and forced convection in stacks of isothermal parallel plates

was derived by Bello-Ochende and Bejan [36]. The starting point of the numerical study

was the expressions of the optimal spacings for pure natural convection (Bejan, [26]) and

pure forced convection generated by a pressure difference (Bejan and Sciubba [25]). Their

results, extended to the Prandtl number range [0.001, 100] for natural and forced convection,

re-inforced the argument that the role of the pressure drop number (or Bejan number) in
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forced convection is analogous to that of the Rayleigh number in natural convection. The

authors claimed that the success of the universal correlation derived in their study is due to

the systematic manner it was developed. We will compare our results against these correla-

tions with air as working fluid in the Result section of the present paper.

We present in this paper numerical results obtained when the pressure and buoyancy

forces act in the same direction. It is shown that an optimal spacing still exists for mixed

convection but its value depends strongly on the pressure difference between the inlet and

outlet sections.

The paper is organized as follows. In section 2, we present the problem formulation both

in dimensional form and in dimensionless form for the specific case of a vertical flat-plate

channel subjected to uniform and equal wall temperatures. The heat transfer characteristics

are then discussed. Section 3 describes the numerical method used to solve the conservation

equations and to satisfy the overall mass conservation. In section 4, results and discussion

are presented successively for natural, forced and mixed convection. Concluding remarks

are drawn in section 5.

2. Governing equations

We consider two-dimensional, incompressible and laminar buoyancy-assisting flows inside

vertical parallel-plate channels, as shown in Fig. 1. The fluid enters the channel stack of

height H at ambient temperature and traverses upward, being heated by the hot walls at

uniform temperature Th. The fully developed region may be eventually reached at the outlet

(z = H), after a development length mainly depending on the value of the plate spacing

for the problem under consideration. On account of the maximum temperature difference

invoked, it is assumed that all physical properties are constant except for the density in the

buoyancy force in the vertical direction (Boussinesq approximation). The reference temper-

ature has been taken as the inlet temperature, as in most of the solutions reported in the
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current literature. However, this choice remains an open question, as discussed by Barletta

and Zanchini [37], especially for fully developed mixed-convection. By assuming also that

the inlet and outlet boundary conditions are the same for each of the channels, we are thus

considering the flow in only one channel (periodicity of the flow in the horizontal direction).

Owing to the stability results by Chen and Chung [16], the governing equations are written

in transient form in order to capture possible transitions to unsteady flows. With the z-axis

pointing upwards and the origin of coordinates placed at the center of the inlet section, the

conservation equations based on a fully elliptic model are

∂u

∂x
+

∂w

∂z
= 0 (1)

∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
= −

1

ρ0

∂p

∂x
+ ν0

(
∂2u

∂x2
+

∂2u

∂z2

)
(2)

∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z
= −

1

ρ0

∂(p+ ρogz)

∂z
+ ν0

(
∂2w

∂x2
+

∂2w

∂z2

)
+ gβ0(T − T0) (3)

∂T

∂t
+ u

∂T

∂x
+ w

∂T

∂z
= a0

(
∂2T

∂x2
+

∂2T

∂z2

)
(4)

Boundary and initial conditions

The boundary conditions are written:

u = w = 0, T = Th at x = ±D/2 and for 0 < z < H

u = 0, ∂w
∂z

= 0, p = −ρ0w
2/2, T = T0 for −D/2 < x < D/2 and at z = 0

u = 0, ∂w
∂z

= 0, p+ ρ0gH = ps,
∂T
∂z

= 0 for −D/2 < x < D/2 and at z = H

(5)

The initial condition is a fluid at rest at uniform temperature T0.

For natural convection ps = 0 while the buoyancy force is neglected in Eq. 3 (i. e. gβ0(T −

T0) = 0) for forced convection.

For forced and mixed convection, a fall in hydrostatic pressure is prescribed at the outlet

section (it could be as well an increase in pressure at the inlet section). Therefore, the

prescribed boundary conditions are inlet temperature and outlet pressure, zero z-derivative

for the vertical velocity component and zero horizontal velocity-component. It should be

emphasized that these flow B.C. differ somehow from those used in most of previous works.
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2.1. Dimensionless form

Natural convection :

Three velocity scales vref are commonly used for natural convection: either vref = ν0/D, or

equivalently for gas flows vref = a0/D, or vref = (gβ∆TH/Pr)1/2 which appears to be more

appropriate for boundary layer type flows.

Forced or mixed convection :

The velocity scale for forced convection with a prescribed volumetric flow rate is generally

the inlet velocity, w0. With the present model, this velocity scale is not a priori known. We

set thus vref = w0 = (−ps/ρ0)
1/2, the maximal possible mean velocity corresponding to a

non-viscous fluid.

As suggested in Jeng et al. [10], we introduce the following set of dimensionless quantities:

x∗ =
x

Dh

, z∗ =
z

DhRe
, τ =

w0 t

DhRe
, u∗ =

uDh

ν0
, w∗ =

w

w0

, p∗ =
p

ρ0w2
0

, θ =
T − T0

Th − T0

(6)

where Dh = 2D denotes the hydraulic diameter of the channel. The dimensionless governing

equations are as follows

∂u∗

∂x∗
+

∂w∗

∂z∗
= 0 (7)

∂u∗

∂τ
+ u∗∂u

∗

∂x∗
+ w∗∂u

∗

∂z∗
= −Re2

∂p∗m
∂x∗

+
∂2u∗

∂x∗2
+

1

Re2
∂2u∗

∂z∗2
(8)

∂w∗

∂τ
+ u∗∂w

∗

∂x∗
+ w∗∂w

∗

∂z∗
= −

∂p∗m
∂z∗

+
∂2w∗

∂x∗2
+

1

Re2
∂2w∗

∂z∗2
+

Gr

8Re
θ (9)

∂θ

∂τ
+ u∗ ∂θ

∂x∗
+ w∗ ∂θ

∂z∗
=

1

Pr

(
∂2θ

∂x∗2
+

1

Re2
∂2θ

∂z∗2

)
(10)

where

GrD =
gβ0D

3∆T

ν2
0

, P r =
ν0
a0

, Re =
w0Dh

ν0

The dimensionless pressure p∗m stands for the motion pressure which can be calculated by

the following equation

p∗m = p∗ + (
Re

Fr
)z∗
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where Fr =
w2

0

gDh
is the Froude number. If w0 → ∞, Re/Fr → 0, and the x∗-momentum

equation shows that the motion pressure becomes constant within a channel cross section.

When Re >> 1, the axial diffusion terms in the momentum and energy equations becomes

negligibly small in comparison with the transverse terms: a parabolic model is then rele-

vant. For a fully established regime (u∗ = 0, θ = 1), the only dimensionless parameter is

thus Gr/Re (see Aung and Worku [2, 4] or Padet et al. [5, 7]).

Boundary and initial conditions:

u∗ = w∗ = 0, θ = 1 at x∗ = ±1/4 and for 0 < z∗ < A
Re

u∗ = 0, ∂w∗

∂z∗
= 0, p∗m = −w∗2/2, θ = 0 for − 1/4 < x∗ < 1/4 and at z∗ = 0

u∗ = 0, ∂w∗

∂z∗
= 0, p∗m = p∗s,

∂θ
∂z∗

= 0 for − 1/4 < x∗ < 1/4 and at z∗ = A
Re

(11)

where A = H/Dh is the height to spacing ratio of the channel.

u∗ = w∗ = 0, θ = 0 at τ = 0 ∀ x∗, z∗ (12)

The dimensionless forms of the governing equations and boundary conditions show that the

problem solution depends on five dimensionless parameters: A, Fr, Gr, Pr and Re. The

relative importance of the buoyancy force is characterized by the ratio Gr/8Re. For pure

natural convection, w0 may be changed into vref = ν0/Dh. Therefore, it is found that Re = 1

and Re/Fr = gD2
h/(ν0/Dh).

2.2. Heat transfer

The total heat transfer rate released by two walls of depth L and height H, denoted as

Q2w, is calculated as follows:

Q2w = 2Lk0

∫ H

0

∂T

∂x

∣∣∣∣
x=D/2

dz = 2h(LH)(Th − T0) (W ) (13)

where h is the mean heat transfer coefficient defined by right-hand side of equality (13). For

natural or mixed convection, a mean Nusselt number expressed byNu2w = Q2w/[2(LH)(k0∆T/D)]
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may be introduced [25]. The enthalpy flux removed from the two heated surfaces by the

stream is

Qen = ρ0cpSc[(wT )H − (wT )0] (W ) (14)

where (wT )z is the cross-section averaged (wT ) over one channel of cross-section area Sc =

DL defined as

(wT )z =
1

D

∫ D/2

−D/2

w(x, z)T (x, z)dx (15)

By using again 2(LH)(k0∆T/D) as a reference heat flux, we can define a Nusselt number

Nuen = Qen/[2(LH)(k0∆T/D)].

It should be emphasized that Q2w is always greater than Qen because heat lost by axial

diffusion at the channel inlet is not included into the definition of Qen. When the wall

temperatures are kept fixed, Q2w and Qen merge provided that the Reynolds number is

large enough for assuming that axial diffusion is negligibly small compared with Q2w and

Qen, as shown by Eqs. 8-10. The difference Qcond = Q2w − Qen yields the effect of axial

diffusion which can be written according to Eq. 5 as

Qcond = k0L

∫ D/2

−D/2

∂T

∂z

∣∣∣∣
z=0

dx = 2k0L

∫ H

0

∂T

∂x

∣∣∣∣
x=D/2

dz−ρ0cpL

∫ D/2

−D/2

[w(x,H)T (x,H)−w(x, 0)T0]dx

(16)

For negligible axial heat diffusion, equation 16 reads:

2k0L

∫ H

0

∂T

∂x

∣∣∣∣
x=D/2

dz = 2h(HL)(Th − T0) = ρ0cpSc[(wT )H − (wT )0] (17)

Such an approximation is one of the foundations introduced for establishing the analytical

solutions reported in Ref. [27, 25, 30].

3. Numerical method and validation

3.1. Numerical scheme

The conservation equations were spatially discretized to second order by the finite vol-

ume method on a structured grid with variables co-localized at the center of the mesh.

Centered approximations were used for the transport terms. A second-order Euler scheme
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was adopted for time derivatives at time t = (n + 1)∆t, with an implicit treatment of the

diffusion terms and an Adams-Bashforth extrapolation procedure for the transport terms.

The velocity-pressure decoupling was handled by a projection method. The resolution of

the Poisson problem with an appropriate source term f , ∇ · (∇Φ) = f , for calculating the

pressure correction Φ = P n+1−P n is known to produce checkerboard oscillations when∇·(.)

and ∇(.) are the collocated divergence and gradient respectively. To stabilize the pressure

correction term, the Poisson equation has been substituted by ∇̃2Φ = f − (∇· (∇Φ̂)−∇̃2Φ̂)

where ∇̃2Φ denotes the 5-points diffusion operator classically used on staggered meshes and

Φ̂ is an explicit approximation for Φ at time t = (n+ 1)∆t.

The solutions of Helmholtz problems for the components of velocity, temperature field

and pressure correction, solution of the modified Poisson problem presented here-above, were

obtained by the Bi-Conjugate Gradient Stabilized (BCGS) method, preconditioned by an

incomplete LU decomposition. Owing to the axial symmetry of the flow, the problem was

solved on the half-width of the channel. The faces of the mesh xf
i and zfk are defined as

follows:

xf
i

D/2
=

i

nx

−
cx
2π

sin

(
i

nx

π

)
, 0 ≤ i ≤ nx (18)

zfk
H

=
tanh

(
cz

(
k
nz

− 1
))

tanh(cz)
+ 1, 0 ≤ k ≤ nz (19)

The coefficients cx and cz define the mesh refinements in the entrance region and along

the isothermal wall. The time integration was performed with the Courant-Friedrich-Levy

number kept fixed to CFL = 0.5. The stationary solution is reached when En,n+1 < 10−4

with

En,n+1 = max
X∈{u,w,T}

(
‖X(n+1) −X(n)‖

‖X(n+1)‖∆t

)
(20)

where ||.||2 is the discrete L2-norm.

The asymptotic behavior of the numerical solution was investigated using a Richardson

extrapolation on two or three sets of three meshes defined by nx ∈ {10, 20, 40}, nx ∈
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{20, 40, 80} and nx ∈ {40, 80, 160} with, in all cases, nz = 50nx. This method leads to the

extrapolated value of f which is written:

fextrap = fnx
+

cnx

(nx)α
(21)

where cnx
is a coefficient depending on nx and fnx

is the numerical result on grid nx × nz.

For sufficiently fine meshes, the value of α must tend towards the order of consistency of

the numerical scheme (i.e. α = 2), fextrap must then become independent of the mesh. The

preliminary study carried out for validating the numerical procedure used the refinement

coefficients cx = 1 and cz = 1.5.

3.2. Heat flux convergence

For small spacings, the transport of enthalpy may be negligibly small compared to ther-

mal diffusion for natural convection or for forced convection when a small pressure difference

is applied. It may therefore be assumed that heat transfer reduces to pure heat conduction

in a rectangular (x × z)-domain with T (±D/2, z) = Tw(z) in 0 ≤ z ≤ H, T (x, 0) = T0 at

z = 0 in 0 < x < D/2 and, adiabatic conditions at z = H in 0 < x < D/2. By using the

method of separation of variables for solving the 2D-heat conduction equation subjected to

the above boundary conditions, the analytical solution writes :

T (x, z) = T0 +∆T
∞∑

n=0

En

cosh(λn
D
2
)
cosh(λnx) sin(λnz) (22)

where λn = (2n+ 1)π/(2H). The coefficients of the series are as follows

En =
2

H∆T

∫ H

0

(Tw(z)− T0)sin(λnz)dz (23)

The conductive flux transfered from the side walls of depth L at x = ±D/2 writes:

Qcond = 2L

∫ H

0

k
∂T

∂x

∣∣∣∣
x=D/2

dz = 2Lk∆T

∞∑

n=0

En tanh(λn
D

2
) (24)

Owing to the adiabatic conditions at x = 0 and at z = H, the conductive heat flux at sur-

face z = 0 equals Qcond. It can be readily shown that the Qcond-expression for Tw(z) = Th, i.e.

Qcond =
8Lk∆T

π

∞∑

n=0

1

2n+ 1
tanh

[
(2n+ 1)π

4

(
D

H

)]
(25)
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is a non-convergent series. Therefore, the numerical scheme cannot converge, as it can be

seen from the results reported in Table 1 for D = 6 10−3 m, H = 0.1 m, L = 1 m and

∆T = 40K. Despite the use of quite fine meshes, the order of consistency is found very

different from α = 2 and the extrapolated values with the three sets of grids differ accord-

ingly. This behavior shows the non-convergence of the numerical scheme for the wall heat

fluxes. That is directly linked to the temperature discontinuity at (x, z) = (±D/2, 0) into

the continuous problem formulation. Such a non-convergent behavior obviously exists for

convective heat transfer but it is almost hidden when considering large enough flow rates

(or Re ) because axial diffusion becomes negligible.

For natural convection (Pr = 0.71, RaH = 3.76 × 106), the values of the average

velocity w, the enthalpy flux, Qen, and the convective flux, Q2w, reported in Table 2,

show that Richardson extrapolation indicates a very good convergence for w̄ and Qen

(w̄ = 0.14716m/s, Qen = 40.246W ). However, Q2w (and thus by conservation of fluxes,

Qcond = Q2w − Qen) gives no indication about spatial convergence. The question of ill-

formulated boundary conditions has been investigated by Sadat and Salagnac [38] : the

present discussion corroborates their very relevant study about the right methods for solv-

ing problems with singularities at the boundaries.

The conclusion is that the total heat transfer at the isothermal wall cannot be accurately

calculated, except if axial conduction (refer to Eq. 16) is negligibly small: in that case Qen

may be considered as a relevant approximation of Q2w.

Possible attempts for solving this problem are the use of channel extensions as it was

suggested in many previous numerical studies that we will briefly review in what follows for

closely related flow configurations.

Naylor et al. [39] solved the full elliptic forms of the governing equations for pure natural

convection using inlet flow boundary conditions based on the Jeffrey-Hamel flow in order to
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represent more realistically the entrance flow. Their solutions validated the inlet pressure

approximation (p = −ρ0w
2/2) commonly used in parabolic formulations. Their predictions

of fluid separation at the channel inlet is not agreement with most of the elliptic solutions

published so far, and appear to be caused by the shape of the extension. The optimization

of plate separation of an open, vertical, parallel-plate channel that is cooled by natural

convection of air with the plates symmetrically heated by uniform heat flux has been studied

by Morrone et al. [40] by solving the full elliptic conservation equations in a I-shaped

computational domain. Correlations for the dimensionless flow rate and optimal values of

the spacing were derived and compared with the predictions of Bar-Cohen and Rohsenow

[25] and Anand et al. [29]. The deviations at small values of the Grashof number were

attributed to the importance of diffusive effects.

The problem of natural convection involving the buoyancy-driven interaction of the fluid

motion in a semi-confined space (including horizontal channels open at both ends) with the

flow in a large external space was extensively studied, both theoretically and numerically.

This problem was reconsidered in a recent paper by Boetcher and Sparrow [41]. One of

the two goals of this paper was to examine the impact of the size of the extended domain,

boundary conditions on its surfaces, and the mesh density required to achieve high accuracy.

As in Desrayaud and Lauriat [42], it was shown that the opening boundary condition must

permit the fluid to enter and leave across a boundary in accordance with the dynamics of

the situation, unlike it was suggested in most of the previous numerical studies. Khanafer

and Vafai ([43]-[44]) showed that an accurate set of effective boundary conditions at the

aperture plane for two-dimensional open-ended structures can be obtained from previous

computations carried out when using an extended domain.

Natural convection of air in channel-chimney systems was studied experimentally [45], and

numerically by using the stream function-vorticity approach and the control volume method

by Manca et al. ([46]-[48]) for vertical channels heated symmetrically at uniform heat flux

and with adiabatic extensions. Results obtained showed how and why the chimney effect

worsens, and provide guidelines to determine if the channel-chimney system is in critical

condition related to flow reattachment or separation.
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Closely related to what we are considering here is the paper by Bello-Ochende and Bejan

[36]: the channel was fitted with upstream and downstream extensions whose lengths were

selected based on accuracy tests. For the downstream extension domain, free slip and no

penetration were specified at one side and zero stress at the other side in order to nullify the

chimney effect. From our point of view, this procedure leads to unrealistic outflow fields for

a periodic array of vertical channels.

Based on the work by Sadat and Salagnac [38], we are therefore suggesting an alternative

approach to those based on channel extensions.

3.3. Regularization of thermal conditions at the inlet corner

Since the problem of convergence of the wall heat flux has been identified as linked to the

temperature discontinuity in (x, z) = (±D/2, 0), we have modified the temperature profile

along the walls using the relationship:

T (±D/2, z) = Tw(z) = T0 + (Th − T0) tanh(5000z) (26)

Therefore the sum of the following series

Qcond = 2L∆T

∞∑

n=0

En tanh(λnD) with En =
2

H

∫ H

0

tanh(5000z) sin(λnz)dz (27)

converges to Qcond = −5.0136 (W ) for D = 610−3m, H = 0.1m, L = 1 m and ∆T = 40K.

It should be noted that the relative temperature difference (Tw(z)− T0)/(Th − T0) increases

from 50% for z = 0.11mm to 99% for z = 0.53mm and up to 99.9% for z = 0.76mm. This

regularization is thus very steep, and we expect it has little effect on the average velocity,

and hence on the enthalpy heat flux.

Taking up the problem of heat conduction with the wall temperature corrected as Tw(z),

we see that the extrapolations (Tab. 3) give a value rounded to five significant digits for

the heat flux equal to Qcond = −5.0138 W . This regularization modifies very slightly the

convective transfer as shown in Fig. 2 in which are drawn the enthalpy flux and convective

flux on the isothermal wall for the problem of natural convection with or without the reg-

ularized temperature. By comparing the values of the average velocity and enthalpy flux
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with or without regularization we found that these values are identical to three significant

digits : w̄ = 0.147 m/s and Qen = 40.2W .

In conclusion, the regularization method adopted allows to calculate the solution with a

very good accuracy and to study the axial conduction, dominant for low axial velocities (or

Pe ≪ 1).

The study of the mesh convergence of numerical solutions was made in the case of natural

convection with a regularized temperature at the inlet corner. In addition to computations

carried out for D = 6mm, we also considered the two spacings D = 1mm and D = 10mm

which correspond to the smallest and largest value of D considered in this study.

Once the reference solutions are established using the Richardson extrapolation method,

we sought the irregular coarsest mesh which provides accurate numerical solutions to 3 sig-

nificant digits, for all considered plate spacings. The retained mesh is composed of 40×1000

control volumes covering a half-channel, the mesh being finer along the isothermal wall and

close to the entrance region by setting cx = 1.64 and cz = 1.82. The ratio between the

smallest and largest length of a rectangular control volume is, for each direction of space,

about 10. Rounded to 3 significant digits, we obtain for L = 1 m:

Q2w = 2.85W , Qen = 0.326W and w̄ = 6.89 · 10−3 m/s for D = 1mm,

Q2w = 41.8W , Qen = 40.2W and w̄ = 0.147m/s for D = 6mm,

Q2w = 57.0W , Qen = 55.6W and w̄ = 0.172m/s for D = 10mm.
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4. Results and discussions

Although the conservation equations were presented in their transient form, only the

steady-state solutions are discussed here. The height and depth of the isothermal plates at

Th = 340 K are set as H = 0.1 m and L = 1 m, and the thermophysical properties of air

evaluated at the inlet fluid temperature, T0 = 300 K, are set as: ρ0 = 1.176 kg.m−3, µ0 =

1.85 10−5Pa.s, cp,0 = 1006 J.kg−1.K−1, k0 = 0.0261 W.m−1.K−1. The two main parameters

of the problem are the plate spacing, D, and the outlet motion pressure, ps. The plate

spacing is varied from D = 10−3m to D = 10−2m (10 ≤ A ≤ 100, 5.29 ≤ GrD ≤ 5.29 103)

and, ps is varied from ps = −0.1 Pa to ps = −1 Pa.

4.1. Natural convection

For air flowing by natural convection in a channel of height H = 10 cm and subject to a

temperature difference ∆T = 40K, the Rayleigh number based onH is RaH = GrD Pr A3 =

3.76×106. Two mean Nusselt numbers may be deduced from the overall heat fluxes defined

by equations 13 and 14: Nu2w = 4.79DQ2w or Nuen = 4.79DQen.

The asymptotic heat transfer correlations reported in Bejan [27] for small or large spac-

ings may be combined for deriving a Nu-correlation valid whatever the spacing is [25].

However, these predictions assume that the axial heat conduction is negligibly small despite

that the temperature at the inlet section is kept fixed at the ambient temperature for all

flow rates. The assumption of constant inlet temperature is also used in the present study

(see Eq. 5). Nevertheless, the elliptic formulation allows comparisons between the total heat

transfer rate released by the two walls and the change in the enthalpy flux between the inlet

and outlet sections, denoted in dimensionless form as Nu2w and Nuen (Table 4).

In terms of the present dimensionless variables, the composite heat transfer correlation given

by Bar-Cohen and Rohsenow [25] for symmetric, isothermal plates may be written as

Nua =
1

A

[
576A6

Ra2H
+

2.873

Ra
1/2
H

]−1/2

(28)
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The first term in Eq. 28 dominates for small spacings while the second term dominates for

large spacings since it is based on boundary-layer type correlations. Equation 28 allows

calculations of the wall heat fluxes provided that the axial thermal diffusion is negligibly

small (i.e. Q2w ≈ Qen) and, therefore, an approximate analytical expression for the mean

flow velocity, wa, is obtained as:

Q2w,a = ρcp,0(LD)wa∆T = (2LH)k0

(
∆T

D

)
Nua ⇒ wa = 2

(a0
D

)
A Nua (29)

It should be noted that Eq. 29 is valid if the outlet bulk temperature is equal, or very close,

to that of the walls since it is assumed that Tb(H) = Th when deriving this equation.

Table 4 shows that the agreement between Nua and Nuen is fairly good for all spacings

considered while large discrepancies between Nua and Nu2w are reported for D < 4 mm

owing to the small flow rates. Figure 3 shows that the analytical and numerical predictions

for w are in good agreement up to D ≈ 7 mm. For larger spacings, the boundary layer-

type solution (Eq. 29) is inappropriate for predicting the flow rate because the outlet velocity

profiles calculated numerically are fully different from those for two separate boundary layers

: in that case, the temperature along the channel axis (i.e. T (0, z)) should be equal to the

inlet temperature. From Fig. 4 showing the temperature profile at the outlet section for

various spacings, it can be deduced that the axial temperature at the outlet section is

much higher than the inlet temperature. On the other hand, the decreases in the relative

importance of axial conduction when increasing the spacing leads to smaller differences

between Nua and Nu2w (Table 4).

4.1.1. Optimal spacing : Dopt

The optimal spacing Dopt corresponds to the maximum heat flux that is possible to

transfer between an ambient fluid flowing between 2n isothermal surfaces (n + 1 plates)

forming a stack of n channels of total width W (Fig. 1). Such a spacing is just a compro-

mise between overall heat transfer area, St = 2n×H × L, and heat transfer in each of the

n channels, Q2w(D) or Qen(D). The optimal spacing for natural convection may be approx-

imately determined from the asymptotic analysis presented in Bejan [27] or by using the
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Nu-correlation by Bar-Cohen and Rohsenow [25]. As a result, the ratio Qen(D)/D varies

between a value close to zero (corresponding to a very small plate-spacing such as w ≈ 0)

and the value for D = W , in between there exists an optimum spacing, D = Dopt, at which

Qen(D)/D reaches a maximum value.

Dopt can be estimated from the intersection of two curves corresponding to asymp-

totic solutions [27] or by using the correlation proposed in [25]. The solution given in

[27],[36] is Dopt
∼= 2.3 H × Ra

−1/4
H , i.e. Dopt

∼= 5.22 mm for the configuration considered

here. The optimization procedure suggested by Bar-Cohen and Rohsenow [25] leads to

Dopt = 2.714 H ×Ra
−1/4
H , i.e. Dopt = 6.16 mm.

Figure 5 shows the variation of Q/D (W/m) as a function of D, Qa/D and Qb/D being

calculated by using the following correlations [27]

Qa/D =
k0L∆T

12
RaH

D2

H3
= 0.327 109D2 and Qb/D =

2k0L∆T

D
0.517Ra

1/4
H =

47.54

D
(30)

In Fig. 5, Dopt corresponds to the maximum value of Q2w/D. Figure 5 shows that Q2w/D

and Qen/D differ significantly for D < 4 mm. The reason is that Qen/D systematically

tends towards zero as D → 0 because w → 0. On the other hand, Q2w decreases less quickly

than D because the problem turns into a pure conductive heat transfer problem as depicted

in section III. As a result Q2w/D increases sharply as D → 0 and tends towards Qcond/D,

the exact analytical solution for regularized hot-wall temperatures (Eq. 27). The difference

Q2w/D−Qen/D is thus the conductive heat flux lost by the fluid at the inlet section, as given

by Eq. 16. This result raises obviously the problem of the classical choice of the temperature

boundary condition at the inlet. Solving this question is out of the scope of the present study.

It can also be seen in Fig. 5 that the numerical solution for Qen/D is in excellent agree-

ment with the asymptotic prediction for small spacings, i.e. for low fluid velocities while it

starts diverging from Qa/D when D ≥ 4 mm. For large spacings, the numerical solution
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does not agree well with the asymptotic solution for boundary-layer type flows, as discussed

previously (Fig. 4): the Qb-solution (Eq. 30) is not an upper bound for the heat flux. On

the other hand, the agreement with the Bar-Cohen and Rohsenow correlation [25] is much

better, as displayed in Fig. 6. Qc/D is calculated as follows

Qc/D = (2LH)k0

(
∆T

D2

)
Nua ⇒ Qc/D = 2.09[4.068× 10−17D−5 + 1.481× 10−3D]−1/2

(31)

From the present numerical results, Dopt is found to be Dopt = 6.52 mm or Dopt = 6.62 mm

by considering either the maximum in Qen/D or in Q2w/D. These values are in good

agreement with the maximum of Qc/D located at Dopt = 6.16 mm [25]. Figure 7 shows

axial velocity profiles and temperature distributions at various height of the channel for

Dopt = 6.62mm. In that case , Q2w = 48.5W whileQb = 47.3W (Eq. 30) andQc = 47.04W

(Eq. 31). The discrepancies are therefore very small. However, Figure 7 shows that the ve-

locity and temperature profiles are far to be like those for a boundary layer-type flow : they

resemble more or less the profiles for an established channel flow.

Bello-Ochende and Bejan [36] suggested to take into account the Prandtl effect on Dopt

and maximum heat transfer density Qmax/D, obtained by substituting D by Dopt in Eq. 30,

as

Dopt
∼= 0.0104A(Pr) H Ra

−1/4
H =⇒ Qmax/Dopt ≤ 0.028B(Pr)

(
k0∆T

H

)
Ra

1/2
H (32)

whereA(Pr) = [2630.52+(2.83Pr0.667)0.52]1/0.52 andB(Pr) = [15.5−0.51+(181Pr0.81)−0.51]−1/0.51.

These correlations are assumed valid in the range 105 ≤ RaH ≤ 107 and 10−3 ≤ Pr ≤ 102.

The result for Pr = 0.71 and RaH = 3.76× 106 is reported on Fig. 5. As can be seen, there

is a large discrepancy with the present results, both on Dopt and Qmax/Dopt which stands

much below our predictions.

4.2. Forced convection

The asymptotic analysis presented in Bejan et Sciubba [30] leads to the following results:

- if the flow regime may be assumed dynamically and thermally established over the most
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part of the height of a vertical channel, the enthalpy flux may approximated as

Qa/D =
D2

12ν0

(
∆p

H

)
cp,0∆T (33)

- on the other hand, the boundary layer limit approximation leads to

Qb/D = 1.208k0∆T

(
(PrH∆p)1/3

ρ
1/3
0 ν

2/3
0 D2/3

)
(34)

Equation 34 is based on the Blasius solution for forced flows over a flat plate and by as-

suming that the velocity along the channel axis, keeping a constant value, is created by a

pressure difference ∆p.

Based on these two limits, the optimum spacing results from the equality Qa = Qb. It

can be readily shown that [30][36]

Dopt,a
∼= 2.726H1/2

(
a0µ0

∆p

)1/4

∼= 2.726H Be−1/4 (35)

where Be = ∆pH2

aoµ0

is the pressure difference number or Bejan number. With the present set

of data, Dopt,a can be rewritten as Dopt,a
∼= 3.88 10−3∆p−1/4.

The order of magnitude of the maximum heat flux that corresponds to Dopt is obtained by

combining Eq. 33 and Eq. 35:

Qmax
∼= 0.62Dopt

(
ρ0∆p

Pr

)1/2

cp,0∆T = 0.62Be1/2Dopt

(
k0∆T

H

)
(W ) (36)

With the present set of data, Qmax can be rewritten as Qmax
∼= 124.4∆p1/4. Similarly to

what has been done for natural convection, equations 35 and 36 were reformulated in [36]

in order to correlate the Pr effect as

Dopt
∼= 0.0114A(Pr) H Be−1/4 and Qmax/Dopt

∼= 0.035B(Pr)

(
k0∆T

H

)
Be1/2 (37)

where A(Pr) and B(Pr) are the same as for natural convection.
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It should be noted that equations 35 and 36 cannot be directly applied if the fluid flow

is created by a pressure drop at the outlet section because the inlet pressure depends on

the inlet velocity through the Bernoulli relationship. On other hand, it is straightforward

to calculate Dopt,a and Qopt,a if the inlet pressure is fixed while assuming ps = 0. With the

model used in the present study, the mass flow rate, ṁ = ρ0(DL)w, as well as the inlet

pressure, p(x, 0), result from solving the conservation equations (7)-(10) with the boundary

conditions given by Eq. (11). Therefore, we applied Eq. 33 to Eq. 37 through calculations

of the pressure difference as ∆p = p(0) − ps = −1
2
ρw2(0) − ps, where w depends on ps and

D. The mean velocity for Dopt and various ps is reported in Table 5. It can be deduced that

the Reynolds number based on the hydraulic diameter ranges within 171 ≤ Re ≤ 309 when

0. 1 Pa ≤ |ps| ≤ 1 Pa.

The ratios Q2w/D and Qen/D are shown in Fig. 8a and 8b for ps = −0.1 Pa and

ps = −1 Pa, the asymptotic solutions Qa/D and Qb/D being drawn in dashed lines. As can

be seen, the agreement between the numerical solution (maximum of Q2w/D) and analytical

solution (intersection of Qa/D and Qb/D) for Dopt is better than for natural convection. On

the other hand, the optimal plate-spacing calculated using Eq. 37 [36] does not agree neither

with our computations nor with Eq. 35.

Table 5 shows comparisons between the analytical (Eq. 35) and numerical values of

Dopt as a function of ps: the agreement is satisfactory. The analytical solution (Eq. 36)

slightly overestimates the peak in Q2w/Dopt as shown from comparisons between the last

two lines of Table 5. Therefore, that can be assumed as a rather good approximation of

the maximum of Q2w/D (within 20%) for the range of ps considered in the present study

(0.1 Pa ≤ |ps| ≤ 1 Pa).

In Figs. 8a and 8b, the effect of axial conduction is exhibited through the discrepancy

between Q2w/D and Q2n/D. It is clearly shown that the effect of axial conduction decreases

either as |ps| or as D are increased. It may be also noted that the differences between
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Q2w/D and Qen/D are less than for natural convection, except for small spacing (D less

than ≈ 2 mm) at which the flow rate is strongly reduced, whatever ps in the range consid-

ered. Therefore, we plotted only the variations of Q2w/D as function of D for various ps in

Fig. 9. As expected, this figure shows that the heat flux increases sharply when decreasing

ps while Dopt decreases. The variations of the mean flow velocity versus D for various ps

reported in Fig. 10 explain the increase in heat flux and decrease in axial conduction which

may be considered negligible when PeD > 100, or D ≥ 9 mm, ≥ 5.5 mm and ≥ 4 mm for

ps = −0.1 Pa, −0.4Pa and −1Pa, respectively.

Mereu et al. [31] investigated the optimal geometry of packages with fixed pumping

power, i.e. when the flow is created by a fan or a pump. By denoting Wm = Gv|ps|

the pumping power for one channel (Gv = w(DoptL) being the volumetric flow rate), the

relations given in [31] for Dopt and Qmax can be rewritten as follows for negligible plate

thickness (e << D):

Dopt
∼= CW−1/5

m and Qmax/Dopt ≤ CC′−1/3
W2/5

m (38)

where C = 2.266/5Pr−60/135(µH)3/5/ρ2/5 and C′ = 0.65k0∆TPr17/27ρ2/3/µ.

Using the set of physical data fixed in the present study, we obtain C = 1.05 10−3 and

CC′−1/3 = 3.24 105. Therefore, comparisons between our predictions and those based

on Eq. 38 can be made. To this end, the results reported in Table 6 were correlated as

Dopt = αWn1

m and Q2w/Dopt = βWn2

m . We found for Dopt: α = 1.31 10−3, n1 = −0.197, and

for Q2w/Dopt: β = 2.35 105, n2 = 0.394. The exponents are thus in excellent agreement with

those in Eq. 38 while the discrepancies on both coefficients are quite large but of same order

of magnitude. In conclusion, the overall discrepancies between our results and those based

on Eq. 38 can be estimated to be about 20%. The values corresponding to the theoretical

solution (Eq. 38) are reported in Fig. 8a and 8b for ps = −0.1 Pa and ps = −1 Pa, respec-

tively. In comparison with the numerical solution, Dopt is underestimated while Q2w/Dopt is

overestimated.
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4.3. Mixed convection

Since comparisons between the results obtained for mixed convection with |ps| < 0.1 Pa

does not differ significantly from those for natural convection (Fig. 5), and since the results

for forced convection with |ps| > 1 Pa show that natural convection has a weak effect, we

consider now the domain |ps| ∈ [0.1 Pa, 1 Pa] in which natural and forced convection have

comparable strengths.

It should be emphasized that the pressure boundary conditions used in the present study

lead automatically to an increase of the mass flow rate when considering mixed convection

instead of natural or forced convection. According to the usual terminology, we are thus

considering ”aiding-buoyancy” flows only, for which any recirculating flow may appear in

the channel entrance region owing to the pressure boundary conditions applied. As it is well

established, reverse flows never occur for identical temperature of the channel walls.

Variations of Q2w/D as function of D for ps = −0.2 Pa and ps = −1 Pa are shown in

Figs. 11a and 11b. These figures indicate that :

- first, the effect of natural convection is significant for ps = −0.2 Pa since the differences

between Q2w,mixed/D and Q2w,forced/D are large. On the other hand, this difference is rather

small for ps = −1 Pa. Therefore, it is not relevant to perform computations for ps < −1 Pa

in the configuration studied.

- second, as expected Dopt is the smallest for mixed convection. However, the difference

between the values for forced and mixed convection decreases as |ps| is increased as can be

seen by comparing Tables 5 and 7.

A single correlation for natural, mixed and forced convection domains was developed by

Bello-Ochende and Bejan [36]. Its range of application is 10−3 ≤ Pr ≤ 102, 105 ≤ RaH ≤ 107
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and 105 ≤ Be ≤ 107. It can be written as

Dopt = 1.76 10−4A(Pr)C(ηb)H Be−1/4 Qmax/Dopt = 0.0011B(Pr)E(ηb)

(
k0∆T

H

)
Be1/2

(39)

where A(Pr) and B(Pr) are as in Eq. 32 and ηb = (RaH/Be)1/4. C(ηb) and E(ηb) are given

by

C(ηb) = [17.69−2.08 + (28.27/ηb)
−2.08]−1/2.08 E(ηb) = [5110.9 + (110.5η2b )

0.9]1/0.9 (40)

For the set of physical data fixed in the present study, we obtain A(Pr) = 307.2, B(Pr) =

8.875, ηb = 44.03 Be−1/4 and Be ≈ 2.45 107∆p (∆p in Pa). From our computations,

∆p = −1
2
ρ0w

2
0 − ps varies between 6.8 10−2 Pa and 7.96 10−1 Pa for Dopt when 0.1 Pa ≤

|ps| ≤ 1 Pa. We conclude that 1.67 106 ≤ Be ≤ 1.95 107 and, 0.663 ≤ ηb ≤ 1.226 in

that range of ps. Therefore, forced convection and natural convection are of same order of

magnitude in our domain of computations. Unfortunately, application of Eq. 39 leads to

completely different results from those reported in Table 7.

From Eq. 37 and Eq. 39 it is readily found that

Dopt,mixed/Dopt,forced = 0.0154C(ηb) with C(ηb) < 17.69 (41)

If natural and forced convection strengths are of same order (ηb = 1), Eq. 41 indicates that

Dopt,mixed ≈ 0.27Dopt,forced. Such a prediction does not agree with our results. For exam-

ple, the present computations carried out for ps = −0.1 Pa leads to ηb = 1.226. The

correlation given by Eq. 40 yields C(ηb) = 14.2 and, Dopt,mixed ≈ 0.22Dopt,forced while

we found (see Tables 5 and 7) Dopt,forced = 7.57 mm and Dopt,mixed = 5.95 mm, i.e.

Dopt,mixed = 0.79Dopt,forced.

Figure 12a presents the Dopt-variations versus |ps|, included is the natural convection

result corresponding to ps = 0. Figure 12a shows that Dopt decreases when |ps| increases

while Figure 12b shows that Q2w/Dopt increases with |ps|, the effect of buoyancy force being
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rather small for ps = −0.1 Pa. Therefore, the last question to be considered is to look for a

true optimal spacing by taking into account not only the increase of thermal efficiency but

also the importance of mechanical load. To this end, it is convenient to make a distinction

between thermal and overall efficiencies.

4.3.1. Efficiency

• Thermal efficiency

The design problem considered is a volume of width W cooled with a stack of n parallel,

isothermal boards of thickness e, much smaller than the spacing D (Fig. 1). The total heat

flux QT removed from the entire stack of heated surfaces having a total heat transfer area

ST = 2n(H × L) is :

QT = nQ2w =

(
W − e

D + e

)
Q2w (W/m2) (42)

The optimal spacing corresponds to the maximum of QT (or of (W/D)Q2w if the thickness

of the plates is such as e << D).

• Overall efficiency

For forced or mixed convection, the pumping power required to create a flow or to increase

the pure natural velocity can be deduced from a kinetic energy balance based on the con-

servation of mechanical energy.

The kinetic energy balance is obtained by multiplying the momentum equation by the

velocity and then by integrating over the whole fluid domain. By taking into account the

boundary conditions for pressure and velocity components used in the present work, the
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kinetic energy balance reduces to:

|ps|Gv︸ ︷︷ ︸
(a)

=

∫ D/2

−D/2

ρ0
w3(x,H)

2
dx

︸ ︷︷ ︸
(b)

+

∫ H

0

∫ D/2

−D/2

1

2
τ : d dxdz

︸ ︷︷ ︸
(c)

−

∫ H

0

∫ D/2

−D/2

ρ0gβ(T (x, z)− T0)w(x, z) dxdz

︸ ︷︷ ︸
(d)

(43)

where Gv = w(DL) is the volumetric flow rate, τ = 2µd is the viscous stress tensor and d

the deformation velocity tensor. The term (a) in Eq. (43) represents the mechanical power

supplied by a device to the fluid. In the case of fins, this device could be a fan, for example.

In the natural convection framework, (a) is zero and it becomes positive in mixed convection.

This power is balanced by two dissipation terms and one production term. Contribution

(b) represents the kinetic power lost by the fluid at the outlet section and (c) denotes the

power irreversibly lost by viscous friction. Note that (c) is negligibly small in the energy

equation, and has been neglected, whereas it must introduced in order to properly balance

the kinetic energy equation. The last contribution (d) corresponds to the production term of

energy which must be accounted for in natural or mixed convection, when its contribution

is significant. From a numerical point of view, the balance of kinetic energy (Eq. 43) is

satisfied within less than 1% for the meshes used in the present study.

Therefore, the pumping power Wm for the entire stack of n boards can be written as

Wm = n|ps|Gv = n|ps|w(DL). For a given value of ps, the effect of natural convection is

to increase the inlet velocity corresponding to forced convection (a result which cannot be

found by prescribing a pressure difference or an inlet velocity, as it has been assumed in

most of the studies on mixed convection). Consequently, the pumping power is necessarily

higher for mixed convection than for forced convection since w increases. However, the total

heat flux QT is also increased. Table 8 allows comparisons between the increases in heat

fluxes and in pumping powers for various pressure drops in the case D = 5 mm. As can be

seen, the increase in heat flux is more than four orders in magnitude larger than the increase

31



in Wm. The overall efficiency of a vertical stack of isothermal plates (mixed convection)

is thus automatically better than that for an horizontal stack (forced convection) provided

that buoyancy assisted flows are considered.

When considering mixed convection, it can be expected that the increase in mechanical

power expense is compensated by a significant increase in heat transfer rate in comparison

with natural convection. The efficiency of the system may be thus evaluated as

η(ps) =
(noptQ2w)mixed − (noptQ2w)natural

|ps|L((nD)optw)mixed

(44)

where nopt, function of ps and H, is the number of channels for a stack of width W working

in optimal conditions (nopt is the integer lying in the interval [(W − e)/(Dopt + e)± 0.5]).

Let us consider a practical application by assuming thatW = 100mm and e = 1mm (air

as the working fluid, ∆T = 40 K, channel height H = 0.1 m, unit spanwise depth L = 1 m ).

For natural convection, it has been found that Dopt = 6.52 mm and Q2w = 46 W : therefore,

(noptQ2w)natural ≈ 600 W . For mixed convection, the values of Dopt are reported in Table 7.

Since Dopt decreases as |ps| increases, nopt is maximum for |ps| = 1 Pa. When |ps| > 1 Pa,

nopt should increase as ∆p
1/4
s according to Eq. 35 owing to the negligible effect of natural

convection. The augmentation with the pressure drop both in nopt and in the heat flux

transferred along each of the channel result in large increases in the overall heat flux, QT .

However, the pumping power augments more quickly than QT . As a result, the efficiency as

defined in Eq. 44 decreases. η(ps) is plotted in Fig. 13 versus ps by taking into account the

various approximations introduced in its definition. The high value of η(ps) (of the order of

105) exhibits a decrease as ≈ p
−2/3
s for the largest values of |ps|, in rather good agreement

with what could be easily found by using the analysis by Bejan and Scubbia [30].
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5. Conclusion

The purpose of this work was to numerically analyze the optimum spacing of a stack

of symmetrically isothermal plates cooled by natural, forced or mixed convection. This

idealized configuration has a number of applications in the convective cooling of electronic

equipments. The governing equations were solved in their full elliptic form by assuming

steady, laminar incompressible flows, constant thermophysical properties, and by invoking

the Boussinesq approximation for natural and mixed convection. We implemented specific

pressure boundary conditions in order to make relevant comparisons between the results

obtained for the three modes of convective cooling, including very small flow rates. In these

cases, it was demonstrated that axial heat conduction plays a significant role and that an

appropriate modeling of the thermal boundary condition is required. The main concluding

remarks are as follows:

- 1 The present computations are in agreement with the optimal plate spacings predicted

by using asymptotic analyses for natural convection [26],[25] and forced convection [30].

- 2 An optimal plate spacing still exists for mixed convection : it is smaller than for forced

convection. The maximal heat flux is increased due to the combined effects of pressure and

buoyancy forces.

- 3 The heat flux transferred by mixed convection is considerably higher than that by nat-

ural convection : for the specific case considered, a small pressure drop at the outlet section

(i.e. −1 Pa) is enough for increasing the heat flux by a factor of three.
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TABLES

nx 10 20 40 80 160 α Extrap.
Qcond −6.78347 −7.73104 −8.66075 2.74585 10−2 53.5420

−7.73104 −8.66075 −9.58505 8.41087 10−3 −167.667
−8.66075 −9.58505 −10.50776 2.48607 10−3 −545.507

Table 1: Pure conductive wall heat flux Qcond (W ) for D = 610−3m, H = 0.1 m, L = 1 m and ∆T = 40 K
according to the mesh refinement (nz = 50nx). Order α of convergence of the numerical scheme and
Richardson-extrapolated values

.

nx 10 20 40 80 α Extrap.
Q2w −43.4100 −44.2962 −45.2092 −4.29693 10−2 −14.0963
Q2w −44.2962 −45.2092 −46.1288 −1.04261 10−2 81.5836
Qen 40.3414 40.2699 40.2520 1.99095 40.2459
Qen 40.2699 40.2520 40.2477 2.07492 40.2464
w̄ 0.147638 0.147280 0.147190 1.99445 0.147160
w̄ 0.147280 0.147190 0.147168 2.01678 0.147160

Table 2: Natural convection for D = 610−3m, H = 0.1 m, L = 1 m and ∆T = 40 K (nz = 50nx).
Convective flux at the isothermal wall, Q2w (W ), enthalpy flux, Qen (W ), and average velocity, w̄ (m/s).
Order α of convergence of the numerical scheme and Richardson-extrapolated values.

nx 10 20 40 80 160 α Extrap.
Qcond −4.87969 −4.97384 −5.00314 1.68449 −5.01636

−4.97384 −5.00314 −5.01110 1.87876 −5.01407
−5.00314 −5.01110 −5.01314 1.96323 −5.01385

Table 3: Pure conductive wall heat flux Qcond (W ) for D = 610−3m, H = 0.1 m, L = 1 m and ∆T = 40 K
with a regularized temperature distribution (Eq. 26) according to the mesh refinement (nz = 50nx). Order
α of convergence of the numerical scheme and Richardson-extrapolated values.
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D (mm) Nu
a

Nu
en

Nu
2w

1 0.0016 0.0016 0.014
3 0.125 0.120 0.151
5 0.782 0.711 0.751
7 1.638 1.591 1.642
9 2.280 2.338 2.402
10 2.563 2.658 2.729

Table 4: Natural convection: comparisons between the mean Nusselt number defined by Eq. 28 and the
numerical values Nu2w and Nuen based on Eqs. 13 and 14.

ps (Pa) −0.1 −0.2 −0.4 −0.8 −1.0

wopt (m/s) 0.178 0.252 0.357 0.504 0.566

∆p = [p(0)− ps]opt (Pa) 0.081 0.161 0.323 0.646 0.807

D
opt,a

(Eq. 35) 7.28 6.13 5.15 4.33 4.10
D

opt
(present) 7.57 6.38 5.38 4.52 4.29

Q
max

/D
opt

(Eq. 36) 0.91 104 1.29 104 1.82 104 2.58 104 2.88 104

Q
2w
/D

opt
(present) 0.70 104 0.99 104 1.39 104 1.97 104 2.21 104

Table 5: Forced convection: comparisons between analytical solutions (D
opt,a

and Q
max

/D
opt

, Eq. 35 and 36
) and numerical solutions: Dopt (mm) and Q

2w
/Dopt (W/m).

ps (Pa) −0.1 −0.2 −0.4 −0.8 −1.0

D
opt

(mm) 7.57 6.38 5.38 4.52 4.29

Q
2w
/D

opt
(W/m) 0.70 104 0.99 104 1.39 104 1.97 104 2.21 104

Gv = [w(DL)]opt (m3/s) 1.35 10−3 1.61 10−3 1.92 10−3 2.28 10−3 2.43 10−3

Wm (W ) 1.35 10−4 3.22 10−4 7.69 10−4 1.83 10−3 2.43 10−3

Table 6: Forced convection: optimal plate-spacing, maximum heat flux, volumetric flow rate and pumping
power for various pressure drops at the outlet section.
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ps (Pa) −0.1 −0.2 −0.4 −0.8 −1.0
D

opt
5.95 5.52 4.95 4.33 4.14

Q
2w
/D

opt
0.98 104 1.21 104 1.56 104 2.10 104 2.32 104

Table 7: Mixed convection: effect of ps on D
opt

(mm) and Q
2w
/D

opt
(W/m).

ps (Pa) −0.1 −0.2 −0.4 −0.6 −0.8 −1.0
Q2w,mixed −Q2w,forced (W ) 20.920 14.848 8.041 5.064 3.570 2.719

|ps|DL(wmixed − wforced) (10
−4 W ) 0.483 0.778 1.116 1.308 1.439 1.540

Table 8: Comparison between the increases in heat flux and in pumping power versus the pressure drop
(D = 5 mm, L = 1 m)

ps (Pa) −0.1 −0.2 −0.4 −0.8 −1.0

nopt 14 15 16 18 19
wopt (m/s) 0.23 0.29 0.38 0.52 0.58

QT = noptQ2w (W ) 816 1001 1235 1636 1824

Wm = |ps|L(nD)optw (10−3W ) 1.9 4.7 12.1 32.4 45.5

Table 9: Mixed convection: optimal number of channels, average velocity, overall heat flux and pumping
power for a stack of isothermal plates working in optimal conditions according to the pressure drop.
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FIGURES

Figure 1: Schematic of the array of vertical isothermal plates and boundary conditions.
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Figure 2: Natural convection: variations of heat flux versus the number of grid points in the x-direction
(nz = 50nx) for D = 6 mm, H = 0.1 m, L = 1 m, ∆T = 40 K. Q2w is the wall heat flux for non-regularized
wall temperature (Eq. 25) or for regularized wall temperature (Eq. 27 ). Qen is the enthalpy flux (Eq. 14).
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Figure 3: Natural convection: comparison between the analytical (wa, Eq. 29) and numerical (w) solutions
of the mean flow velocity versus the plate spacing.
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Figure 4: Natural convection: temperature profile at the outlet section for various plate spacings.
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Figure 5: Natural convection: variations of the ratios Q/D with the plate spacing. Qa and Qb are the
asymptotic analytical solutions (Eq. 30), Q2w and Qen are given by Eqs. 13 and 14, and Qcond by Eq. 27.
The cross symbol is for Dopt and Qmax/Dopt based on Eq. 32.
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Figure 6: Natural convection: variations of the ratios Q/D with the plate spacing. Qc is the analytical
solution (Eq. 31), Q2w and Qen are given by Eqs. 13 and 14.
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(a) axial velocity (b) temperature

Figure 7: Natural convection: axial velocity and temperature profiles at various heights for the optimal
spacing, Dopt = 6.62 mm.
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Figure 8: Forced convection: variations of the ratios Q/D with the plate spacing for ps = −0.1 Pa and for
ps = −1 Pa (Qa and Qb are the asymptotic analytical solutions, Q2w, Qen are given by Eqs. 13 and 14,
respectively). The cross symbols are for the analytical solutions given by Eq. 37 [36] and Eq. 38 [31].
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Figure 9: Forced convection: variations of the ratio Q2w/D versus the plate spacing for various ps.
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Figure 10: Forced convection: variations of the mean flow velocity versus the plate spacing for various ps.
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Figure 11: Mixed convection : variations of the ratio Q2w/D versus the plate spacing for forced and mixed
convection.
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Figure 12: Mixed convection : variations of Dopt and Q2w/Dopt versus ps for forced and mixed convection.
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Figure 13: Variations of overall efficiency η versus ps for mixed convection.
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