Simulation of transient Rayleigh-Bénard-Marangoni convection induced by evaporation
Résumé
Numerical simulation of thermal convection induced by solvent evaporation in an initially isothermal fluid is considered. Both thermocapillarity and buoyancy driving forces are taken into account, and a criterium based on the Peclet number is used to analyze the stability of this transient problem. Critical Marangoni and Rayleigh numbers are obtained for a large range of Biot and Prandtl numbers. Results of the non-linear simulations are compared with a previous linear transient stability analysis based on a non-normal approach and with visualizations performed during polyisobutylene (PIB)/toluene solutions drying experiments. A scaling analysis is developed for the Marangoni problem and correlations are derived to predict the order of magnitude of temperature and velocity as a function of Bi, Ma and Pr numbers.
Origine | Fichiers produits par l'(les) auteur(s) |
---|