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Simulation of transientRayleigh-Bénard-Marangoni onvetion induedby evaporationO. Touazi a,b, E. Chénier a, F. Doumen b,∗, B. Guerrier b

a Université Paris-Est, laboratoire Modélisation et Simulation Multi Ehelle,MSME FRE3160 CNRS, 5 bd Desartes, 77454 Marne-la-Vallee, Frane
b Univ Pierre et Marie Curie-Paris6, Univ Paris-Sud, CNRS, F-91405,Lab FAST, Bat 502, Campus Univ, Orsay, F-91405.AbstratNumerial simulation of thermal onvetion indued by solvent evaporation in aninitially isothermal �uid is onsidered. Both thermoapillarity and buoyany drivingfores are taken into aount, and a riterium based on the Pelet number is usedto analyze the stability of this transient problem. Critial Marangoni and Rayleighnumbers are obtained for a large range of Biot and Prandtl numbers. Results ofthe non linear simulations are ompared with a previous linear transient stabilityanalysis based on a non normal approah and with visualizations performed duringPIB/Toluene solutions drying experiments. A saling analysis is developed for theMarangoni problem and orrelations are derived to predit the order of magnitudeof temperature and veloity as a funtion of Bi, Ma and Pr numbers.Key words: free onvetion, evaporation, stability, heat transfer

1 IntrodutionEvaporation of a volatil �uid or drying of a solution indues a derease of thetemperature at the free surfae due to the vaporization latent heat. This situ-ation an generate onvetive motion due to both buoyany and thermoapil-lary driving fores [1�6℄. Several points may be pointed out when studying suh
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systems. First the boundary ondition at the free surfae results from the ou-pling between the system and the surroundings. The evaporating �ux and thenthe temperature gradient in the �uid depends on the heat and mass transferswith the ambient air. Several authors have developed numerial or theoretialstudies taking into aount this oupling, for example Merkt and Bestehorn[7℄, Colinet and o-authors [8℄, Ozen and Narayanan [9℄ and Moussy and o-authors [10℄. Both surfae tension- and buoyany-driven onvetion may ouras studied for example by Medale and Cerisier in several geometries but ina nonvolatile �uid [11℄. Another point that is more spei�ally onsidered inthis paper is the transient nature of many experiments. Indeed, starting froman initial state where the �uid is isotherm, evaporation indues a dereaseof the surfae temperature. The basi temperature �eld orresponding to thepure di�usive problem (null veloity �eld) is time dependent so that a lassialstability analysis based on the perturbation of a steady ondutive regime isquestionable. Then the predition of ritial onditions for the onset of on-vetion is a omplex problem. A theoretial linear analysis based on a nonnormal approah has been reently developed to take into aount the timedependent basi state for this same problem (f. [12℄ and referenes herein).In this paper we present a 2D non linear numerial simulation to study thedevelopment and evolution of onvetive patterns in the transient regime,when both buoyany and thermoapillary e�ets an be put forward. A largerange of parameters haraterizing the problem (Biot, Marangoni, Prandtl andRayleigh numbers) are investigated. This numerial approah follows an ex-perimental study where numerous experiments of drying of a polymer/solventsolution have been performed with di�erent thiknesses and visosities. Sim-plifying assumptions follow from experimental results and are presented insetion 2, as well as the model equations and numerial method. Setion 3and 4 are devoted to 2D non linear numerial simulations and to the deter-mination of onvetion thresholds for this transient problem. Comparisonsare made with experimental results and with previous results dedued fromthe linear stability analysis. At last, a saling analysis is developed for theMarangoni problem in setion 5.2 Problem formulation2.1 Thermal modelDrying experiments that underlie the simulations presented in this paper havebeen performed on the system Polyisobutylene (PIB)/Toluene. Experimentsare desribed in detail in [13℄ and we only reall the main points used to estab-lish the simpli�ed model onsidered here. The solution initially at the ambient2



temperature is poured in a dish loated in an extrator hood. The two on-trol parameters used in the experiments are the initial thikness (0.3mm ≤
e ≤ 14.3mm) and the initial polymer mass fration (0 ≤ ωP ≤ 15%). Poly-mer solution visosity is strongly sensitive to polymer onentration [14℄. Thevisosity µ is 5.5 × 10−4Pa.s and 2.4Pa.s for ωP 0% and 15% respetively.Several simplifying assumptions have been inferred from experimental ob-servations. They are valid only at the beginning of the drying whih is thetime under onsideration in this paper. When evaporation begins, onvetivepatterns have been observed at the very beginning of the experiment(quasi-instantaneous or less than 100 s after pouring the solution). They disappearwell before the end of the drying. The Lewis number (ratio of the thermaldi�usivity to mass di�usivity) being very large (about 103), it is assumed thatonvetive patterns observed in the �rst minutes are mainly driven by ther-mal e�ets. Two experimental observations detailed in [13℄ support this thesis.First, a few experiments were onduted with deuterated solvent, whose den-sity is higher than the polymer density. In that ase, the density of the solutiondereases when the polymer onentration inreases, leading to a stable situa-tion if the solutal Rayleigh-Bénard problem is onsidered. Sine no di�ereneswere found with the experiments onduted with the standard solvent, wean exlude solutal buoyany as a dominant mehanism. Seond, free surfaetemperature �elds measured by infrared amera showed that the end of freeonvetion was related to the duration of the transient thermal regime. Solutalonvetion is then not taken into aount in this paper.Moreover, the layer thikness is assumed to remain onstant. This hypothesisan be adopted if Peint ≪ 1, where the interfae Pelet number is de�ned as
Peint ≡ (evev)/α with e the layer thikness, vev the interfae veloity due toevaporation and α the thermal di�usivity. Indeed when Pe ≪ 1, the surfaedisplaement vevδdiff remains negligible ompared to the total thikness eduring the problem harateristi time i.e. the di�usion time δdiff ≡ e2/κ. Inthe experiments, the Pelet number is smaller than 0.1. In the same way, therate of hange of the polymer mass fration is small and the physial propertiesof the solution are assumed onstant.The free surfae is assumed �at. Surfae deformation an be negleted if therispation number Cr ≡ (ρνα)/(γe) ≪ 1 [15℄ and if the Galileo number Ga ≡
(ge3)/(να) ≫ 1, where ρ, ν, γ, respetively denote �uid density, visosity,surfae tension, and where g is the aeleration due to gravity. Suh onditionsare shown to be satis�ed for the experiments onsidered here. Then surfaedeformability an be disregarded.For sake of simpliity the numerial analysis is restrited to a two-dimensionalgeometry sine the study fouses on the onset of onvetion and not on thedesription of onvetive patterns morphology. Comparison of experimental3



and simulated thresholds (see setion 4.2) validates the 2D approah a poste-riori. The solution layer is ontained in a retangular domain of aspet ratio
A = L/e = 20, where L is the horizontal length and e the thikness of thesolution layer. The vertial and bottom solid walls are supposed to be adia-bati and non permeable. Evaporation ours at the free surfae only. Heatand mass transfers between the free surfae and the ambient air are desribedby global transfer oe�ients.With the Boussinesq approximation, the Navier-Stokes and energy equationsare:

~∇.~v = 0, (1a)
∂

∂t
~v + (~v.~∇)~v =−1

ρ
~∇p + ν∆~v + gβT (T − T0)~ey, (1b)

∂

∂t
T + (~v.~∇)T = α∆T, (1)where ~v(~x, t) is the veloity �eld, p(~x, t) is the pressure �eld, T (~x, t) is thetemperature �eld, T0 the temperature of the ambient air and ~ey the unit ve-tor in the vertial diretion. In this approximation, the density ρ is taken tobe the density at T = T0. βT , ν = µ/ρ, α = k/ρc are the thermal expansionoe�ient, the kinemati visosity and the thermal di�usivity with µ the dy-nami visosity, k the thermal ondutivity and c the spei� heat.The polymer mass fration being small, we have used the physial proper-ties of the toluene exept for the visosity that is very sensitive to poly-mer onentration. The following values have been used: ρ = 865kg.m−3,

k = 0.142W.m−1.K−1, α = 0.97×10−7m2.s−1, βT = 1.07×10−3K−1. For eahexperiment the visosity is also assumed onstant but depends on the initialpolymer onentration, aording to an empirial law (Fig.1) dedued fromvisosity measurements performed with a Low Shear 30 rheometer (oaxialylinders and imposed deformation) [16℄.2.2 Initial and boundary onditionsAt t = 0 the �uid is at the ambient temperature T (~x, 0) = T0. To studythe stability of the system, a perturbation is imposed on the veloity �eld at
t = 0. Sine the strutures of real experimental perturbations are not knowna priori, a random veloity perturbation with zero mean and amplitude ris implemented in the following way: numerial resolution of the problem isahieved using a �nite volume sheme. For eah spatial node, the value allottedto the veloity at t = 0 omes from a random drawing of a uniform distributionbetween −r/2 and +r/2. Further studies have shown that the hoie of the4



initial perturbation does not modify muh the stability thresholds (f. setion3.2 and [12,17℄).The solid walls are adiabati with a zero veloity boundary ondition. On thefree surfae loated at y = e, the thermal boundary ondition is :
−k

(

∂T

∂y

)

y=e

= hth(T (x, e, t) − T0) + LΦev (2)The �rst term of the r.h.s. is the onvetive heat transfer between the freesurfae and the ambient air where hth is the heat transfer oe�ient. Theseond term, L Φev, orresponds to the solvent evaporation with L the latentheat of vaporization and Φev the evaporative �ux, that an be expressed as
Φev = hm(ρg

Sint − ρg
S∞) (3)where hm is the mass transfer oe�ient, ρg

Sint and ρg
S∞ are the solvent on-entration in the gas phase just above the interfae and far from the interfaerespetively. The last one is zero, due to the important air �ow rate in theextrator hood. With the ideal gas law, we get:

Φev = hm
MSPV S0(T (x, e, t))

RT (x, e, t)
a(T (x, e, t), ϕS(x, e, t)) (4)where MS is the solvent molar mass, a is the solvent ativity, PV S0 is thesaturated solvent vapor pressure, ϕS is the solvent volume fration in the liquidphase at the interfae and R is the ideal gas onstant. In polymer solutionsthe ativity is lose to one for solvent volume fration greater than about 0.4[18℄, so that Φev an be assumed independent of the solvent onentration atthe beginning of the drying (a ≃ 1).Moreover, given the small amplitude of temperature variations observed in theexperiments (a few degrees), it is possible to use a �rst order development of

Φev, i.e.
Φev(T (x, e, t)) ≃ Φev(T0) + ∂Φev

∂T
|T0

(T (x, e, t) − T0)The thermal boundary ondition at the free surfae an then be approximatedby the following expression
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= Hth(T (x, e, t) − T0) + L Φev(T0) (5)with Hth = hth + L ∂Φev

∂T
|T0A shear stress boundary ondition is imposed at the free surfae, given by the5



balane of surfae tension fores with the visous stresses in the �uid.
µ
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y=e

=
dγ

dT

(

∂T

∂x

)

y=e

(6)where γ, the surfae tension, is a linearly dereasing funtion of temperature.The other boundary ondition at the interfae onerns the vertial omponentof the veloity, vy. Assuming a planar surfae, and assuming that the spatialvariations of the evaporation �ux are muh smaller than the �ux itself, it anbe shown [12℄ that, in the limit of Peint ≪ 1, the boundary ondition reduesto:
vy = 0 at y = e. (7)Aording to experimental results, the following values have been used: Hth =

28W.m−2.K−1, L = 396kJ.kg−1, Φev(T0) = 3.37 × 10−4kg.m−2.s−1, dγ/dT =
−0.119 × 10−3N.m−1.K−1.2.3 Non-dimensional equationsThe non-dimensional form of the equations results from saling the lengthsby the thikness of the �uid e, the veloity ~v by the di�usion veloity α/e,and time t and pressure p respetively by e2/α and ρα2/e2. The temperaturesale is θ = T−T0

∆T
where ∆T is the di�erene between the initial temperature

T0 and the steady temperature obtained at the end of the transient regime,when the temperature is uniform in the solution. From equation 5 we have
∆T = LΦev(T0)

Hth

, that is ∆T = 4.8K for the experimental on�guration. Letus note that this temperature sale is di�erent from the one used in lassialstability analysis where the basi state is haraterized by a onstant temper-ature gradient in the �uid.The dimensionless form of equations (1a-1) is:
~∇.~v =0 (8a)

∂~v

∂t
+ (~v.~∇)~v =−~∇p + RaPrθ~ey + Pr∆~v (8b)

∂θ

∂t
+ (~v.~∇)θ =∆θ (8)where Pr = ν/α is the Prandtl number, Ra = βT g∆Te3/(να) is the Rayleighnumber. 6



The dimensionless form of thermal (Eq. 5) and dynami (Eq. 6 and 7) bound-ary onditions at the free surfae are :
−
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= Bi (θ(x, y = 1, t) + 1) with Bi =
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with Ma = −e ∆T
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(
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) (10)
vy = 0 at y = e. (11)with Ma the Marangoni number and Bi a modi�ed Biot number that takesinto aount the evaporative �ux.The �ow and thermal behaviour in the solution are governed by four non-dimensional parameters (Bi, Ma, Pr and Ra), that depend on the two ontrolparameters used in the experiments, the initial thikness and visosity [13℄.2.4 Numerial methodComputations are arried out with a olloated �nite volume sheme with aseond order spae and time disretization [19℄. The disrete sheme is fullyoupled. The set of the disrete balane equations is solved by an under-relaxedNewton's method with the iterative linear solver BICGSTAB, preonditionedby an inomplete LU fatorization. The hosen mesh is a standard regularmesh L ∗ e = (800 ∗ 40) and the time step is equal to ∆t = 10−3. Resultsobtained with �ner grids or time steps did not show any notieable hangesin the results.3 Transient onvetion3.1 Typial temperature and veloity �eldsFig.2 gives a typial example of the time evolution of the non dimensionaltemperature di�erene between the bottom and the free surfae of the solu-tion for a on�guration where onvetion is observed (parameters of the testase are given in table 1, initial veloity disturbane amplitude r = 4). Asa omparison, the temperature evolution obtained for a pure di�usive prob-lem is also drawn (dashed line obtained with Ma = 0 and Ra = 0). Severaldomains an be observed. At the beginning, heat transfer is dominated bythe di�usion and the two urves are superposed (domain I). Then onvetion7



starts and it is haraterized �rst by strong and rapid hanges of the temper-ature �eld (domain II). This regime is followed by a quasi-steady regime witha slow derease of the temperature di�erene between the bottom and the freesurfae (domain III). At last for large times the two urves orresponding topure di�usive or onvetive regimes go to zero. Indeed the temperature in the�uid is uniform at the end of the thermal transient regime (not represented inFig.2).The stream lines and the temperature on the free surfae are given in Fig.3for three dimensionless times t=0.5, t=0.6 and t=0.65. We an observe thevanishing of the entral ell between t= 0.5 and t=0.65 that orresponds tothe seond peak that an be observed on the temperature evolution in Fig.2.It is followed by the quasi-steady regime, with a onstant number of ells.The objetive of this paper is to analyze the three regimes, as a funtionof the four non dimensional parameters that haraterize the problem, Bi,
Ma, Pr and Ra numbers. The transition from domain I to domain II, i.e.the onset of onvetion is analyzed in setion 4. Setion 5 is dediated tothe haraterization of the quasi-steady regime, using saling laws to get anestimation of the temperature and veloity in this regime.To haraterize the presene of observable onvetion, a riterium based on thethermal Pelet number was hosen. The thermal Pelet number Pe = e v/αompares the relative importane of advetion and di�usion. The veloity
v used in the estimation of the Pelet number is the maximal value of theveloity norm. Then onvetion will be onsidered signi�ant if, when thesystem is submitted to an initial veloity perturbation, there is a time t wherethe perturbation is signi�antly ampli�ed, i.e. suh as dPe(t)/dt > 0 and
Pe(t) > 1.3.2 E�et of the initial disturbane amplitudeAs the problem is sensitive to initial onditions, we have �rst performed apreliminary study to analyze the in�uene of the amplitude of the initial dis-turbane on the time evolution of the Pelet number. The parameters used forthis test are given in Tab.1.Fig.4a shows the temporal evolution of the Pelet number in log sale. Atthe beginning a linear regime an be observed with a dereasing of the initialperturbation followed by its ampli�ation. But at large t, in the non linearregime, Pe beomes quasi independent of the initial perturbation. If we on-sider the hosen riterium (Pe > 1), all the tests lead to the same onlusion,i.e. onvetion is observed; only the time delay depends on the amplitude of thedisturbane. The orresponding time is about t = 0.1 for r = 4 and t = 0.038



for r = 400. Fig.4b shows the Pelet number normalized by its initial value,so that the transition between the linear and non linear regime an be learlyobserved.Sine the general trends observed in the three regimes and the ourrene ofonvetion do not depend strongly on the perturbation amplitude (at least in alarge domain), we use r = 4 in the following. A more detailed stohasti anal-ysis of the in�uene of the initial perturbation struture has been performed[17℄ and gives the same onlusions: hanging the initial perturbation induesonly small hanges in the pattern wavelength, in the temperature or in thePelet variations. The threshold value orresponding to the onset of onvetionis therefore little sensitive to the initial perturbation. This assumption is on-�rmed in setion 4.3 by the good agreement between the thresholds obtainedwith the non-linear simulations and the linear stability analysis. However thethreshold must not be understood as a preise delimitation between stable andunstable domains but rather as a transition region (a fator of about two isobtained for di�erent initial perturbations). This "blurring" e�et is inherentto the transient harater of the problem under study [12℄.
4 Stability4.1 In�uene of the dynami visosityThe visosity of solutions understudy being very sensitive to the initial poly-mer onentration, we �rst study the in�uene of the dynami visosity µon the Pelet transient behavior. Both buoyany and surfae tension drivingfores are taken into aount (Rayleigh-Bénard-Marangoni on�guration) andresults are given in Fig.5 for e = 1mm and for di�erent values of the dynamivisosity µ.For the largest visosities, the Pelet number is a monotone dereasing fun-tions and the initial perturbation dies down. For smaller visosities, there isan ampli�ation of the initial perturbation after some times. However thisampli�ation may be very weak and for visosity larger than 5mPa.s thePelet number is always smaller than one, so that this on�guration is "sta-ble" aording to the riterium de�ned in setion 3.1. The ritial visosityorresponding to the onset of onvetion lies between 4mPa.s and 5mPa.s forthis thikness. In the next setion, the same study was performed for otherthiknesses in order to ompare simulations and experimental data.9



4.2 Comparison of simulations and experimentsComparison is made with experimental points in the range of Bi, Ma, Prand Ra overed by the variation of the two experimental ontrol parameters(initial thikness and visosity), that is:
0.06 ≤ Bi ≤ 5; 6.6 ≤ Pr ≤ 2.5 104; 20 ≤ Ma ≤ 1.2 105; 1.3 ≤ Ra ≤
1.4 106Numerial simulations have been performed for 1mm < e < 30mm. For eahthikness, we look for the maximum visosity suh as the onvetion riteriumis ful�lled. This systemati study leads to the onstrution of the transitionboundary between the "stable" and "unstable" domain in the plane thikness-visosity, aording to the riterium previously de�ned. Numerial results andexperimental points are given in Fig .6. When the whole Rayleigh-Bénard-Marangoni problem (RBM) is onsidered (blue line), a hange in the frontierslope is observed around e = 8mm. As already known for RBM on�gura-tion [1℄ this orresponds to the transition between the domain dominated byBénard-Marangoni (BM) instabilities (small thiknesses) and Rayleigh-Bénard(RB) instabilities (large thiknesses). To illustrate this point, the same simula-tions were performed aneling the buoyany term or the surfae tension termin the Navier Stokes equation. The orresponding thresholds are ompared inFig.6. For thiknesses smaller than a few millimeters the urves with or withoutbuoyany are similar and Marangoni e�ets are dominant. The reverse is ob-served for thiknesses larger than 8mm, where buoyany e�ets beome dom-inant. This on�rms experimental results where two di�erent morphologies ofonvetive patterns had been observed for small and large thiknesses respe-tively (transition from ells to a mixture of ells and rolls, f. [13℄). Agreementbetween experimental observations and simulated thresholds is good, exeptfor some experiments loated in the "stable" domain and exhibiting onvetivepatterns. This point is disussed in the next setion.4.3 Comparison with linear stability analysisThe results obtained in this paper with diret non linear simulation are om-pared to a linear stability analysis otherwise performed and detailed in [12℄.For this transient problem, a spei� method was used, based on the non-normal approah. First, as usually done, linear perturbation equations werederived. Two ampli�ation gains were de�ned. The �rst one GV (t) is basedon the kineti energy of veloity perturbations and the seond one GT (t) is aquadrati term based on temperature perturbation. Then for eah wavenumber
k (spatial development of the perturbation in the in�nite horizontal diretion)and eah time t an optimization problem was solved in order to get the ver-10



tial pro�le (0 < y < e) of the initial optimal perturbation whih leads tothe maximization of GV (t, k) (veloity perturbation) or GT (t, k) (temperatureperturbation). For a given set of non dimensional parameters (Ra, Ma, Prand Bi numbers) we then de�ne G∗

V = Maxt,kGV , the larger ampli�ationfor any time and wavenumber when the initial perturbation is imposed on theveloity, and G∗

T = Maxt,kGT that is the larger ampli�ation for any time andwavenumber when the initial perturbation is imposed on the temperature. GVand GT are normalized with the initial values of the kineti energy or tem-perature norm, so that G∗ < 1 means that the initial perturbation is neverampli�ed [12℄.The di�erent riteria are ompared in Fig.7. As an be seen, the boundariesobtained with veloity perturbations either with non linear simulations (ri-terium "Pe = 1") or with linear analysis ("G∗

V = 1") are very lose. Perturba-tions on the temperature �eld (with riterium "G∗

T = 1") give thresholds abovethe other ones, but, as previously said, the thresholds must rather be seen asa transition region, and all the riteria lead to the same order of magnitude.At last, the pattern wavelengths obtained from simulations (quasi-steady regime)and experiments have also been ompared and are in good agreement, as shownin Fig.8. As already obtained in RBM studies [20℄, no hange is observed atthe transition from surfae tension driven �ow to buoyany driven �ow, thatours for a thikness around 1m.
4.4 Critial Marangoni and Rayleigh numbersBeyond the experiments a more general analysis of the in�uene of the Biotand Prandtl numbers on the stability thresholds have been performed. In thease of pure Bénard-Marangoni �ow, the ritial Marangoni number is shownto depend very few on the Prandtl number and to depend non monotoniallyon the Biot number, with a minimum value around Bi = 2 (Fig.9). Compari-son with results obtained with the linear analysis and riterium G∗

V = 1 [12℄is made in Fig.9. The thresholds obtained with the two approahes are verylose and two asymptoti power laws an be de�ned: "Bi Ma ≃ constant" and"Bi ≃ constant Ma" for low and large values of Biot numbers respetively.Similar results (not presented here) have been obtained with the RB on�gu-ration, i.e. linear and non linear results are very lose.11



5 Saling laws in the quasi-steady regimeThis last setion is devoted to the analysis of the quasi-steady regime in theBénard-Marangoni ase (Ra = 0). For suh onditions, we aim to obtain thesaling laws that give the order of magnitude of the temperature variationsand of the veloity inside the liquid layer, as a funtion of the three non-dimensional parameters Ma, Bi and Pr. This objetive is reahed by solvingequations 8a to 11 in terms of order of magnitude (saling analysis, f. forinstane ref. [21℄ for an example of saling derivation applied to a transientfree onvetion problem). The derivation is made possible by use of symplifyingassumptions listed below.First, the existene of the quasi steady regime is assumed a priori. The ob-tained results are then restrited to the domain where onvetion is expeted,i.e. the domain above the two asymptotial lines de�ned in Fig.9 (f. [12℄ fora detailed analysis of the asymptotial values). The following assumptions aremade:H1 we assume the existene of an hydrodynami boundary layer (resp. ther-mal boundary layer) of thikness δH (resp. δT ) below the free surfae.H2 time derivative terms in equations (1b) and (1) are negleted (quasi-steady regime assumption).H3 the vertial and horizontal temperature variations aross a onvetive ellare of same order of magnitude, denoted ∆θ (ompare for instane Figs .2 and.3).H4 the wavelength of onvetive strutures is of the order of the thikness (f.Fig.8), so that the order of magnitude of the harateristi length sale in the
x-diretion is 1.H5 the analysis is restrited to �uid with Pr & 1 1 .In addition, the order of magnitude of the veloity omponent parallel tothe free surfae in the hydrodynami layer is denoted vx, while the order ofmagnitude of the vertial veloity omponent is denoted vy.5.1 equationsIn the following, the equations of setion 2.3 are written in terms of order ofmagnitude.* Thanks to H1, H3 and H4, the shear stress boundary ondition (equation
1 & 1 stands for ∼ 1 or ≫ 1 12



(10)) reads :
vx

δH
∼ Ma ∆θ (12)* The mass onservation (equation (8a)), with assumptions H1 and H4 reads:

vx ∼ vy

δH
(13)* Momentum onservation.Following a lassial derivation, the pressure gradient term an be eliminatedfrom equations (8b) :

1

Pr
[
∂

∂x
(
∂vy

∂t
+vx

∂vy

∂x
+vy

∂vy

∂y
)− ∂

∂y
(
∂vx

∂t
+vx

∂vx

∂x
+vy

∂vx

∂y
)] =

∂

∂x
(
∂2vy

∂x2
+

∂2vy

∂y2
)− ∂

∂y
(
∂2vx

∂x2
+

∂2vx

∂y2
)(14)This relation states a balane between inertia (left-hand side) and frition(right-hand side). The times derivatives ∂tvx and ∂tvy an be dropped outthanks to the assumption of quasi-steady regime (H2). To go further, we needto distinguish two ases : δH ≪ 1 or δH ∼ 1. Aording to equation (13), theondition δH ≪ 1 implies vx ≫ vy. In that ase, it is easy to show that, interms of order of magnitude, equation (14) reads v2

x/(PrδH) ∼ vx/δ
3
H , whihleads to:

δH ∼
√

Pr

vx

(15)This equation is valid for √Pr/vx ≪ 1 only, sine it was established by assum-ing δH ≪ 1. In the opposite ase suh that √Pr/vx & 1, the hydrodynamiboundary layer thikness saturates at δH ∼ 1, and inertia is no more involvedin the problem.* Energy onservation.Denoting vyT the order of magnitude of the vertial veloity omponent in-side the thermal boundary layer, the equation (8) is a balane between fourterms, due to advetion and di�usion. With assumptions H3, we get the fol-lowing terms (vx∆θ ; vyT ∆θ/δT ; ∆θ ; ∆θ/δ2
T ). One again two ases mustbe onsidered, aording to the value of δT . In the ase δT ≪ 1, one an easilyshow that

δT ∼ 1√
vx

(16)This relation is valid if 1/
√

vx ≪ 1 only. In that ase, the thermal boundarylayer thikness results from a balane between advetion and di�usion. In theopposite ase 1/
√

vx & 1, it saturates at δT ∼ 1, and another regime ourswhere advetion is negligible ompared to di�usion.* Thermal boundary ondition.The equation (9) states a balane between three terms, haraterizing respe-13



tively the di�usion in the liquid, the heat supplied by onvetion from the gazphase, and the ooling due to evaporation :
∆θ

δT

; Bi∆θ ; Bi (17)Two regimes an be onsidered, depending on whih terms dominate the heatbalane at the interfae. If the ondition ∆θ ≪ 1 is satis�ed, the heat �ux fromonvetion in the gas phase is negligible, and the energy needed by evaporationis balaned by the di�usion in the liquid. The equation (17) hene reads:
∆θ ∼ BiδT (18)The equation (18) is valid if BiδT ≪ 1 only. Conversely, another regime ourif BiδT & 1, haraterized by the temperature variation saturating at ∆θ ∼ 1.In that ase the energy is supplied by onvetion in the gas phase, sine theterms Bi∆θ and Bi dominate in equation (17).5.2 Synthesis of the di�erent regimesThe previous setion shows that we must onsider a ombination of the fol-lowing ases :

δH ≪ 1 or δH ∼ 1 (19)
δT ≪ 1 or δT ∼ 1 (20)

∆θ ≪ 1 or ∆θ ∼ 1 (21)We see from equations (15) and (16) that only ases where δH & δT are tobe taken into aount sine the analysis is restrited to �uid with Pr & 1(H5 assumption). Moreover, only unstable on�gurations are onsidered and,in the Ma/Bi plane, the domain is restrited to the points above the twoasymptotial urves of the ritial Marangoni obtained from the ompletestability analysis, i.e. Bi ∼ Ma−1 for small Biot numbers and Bi ∼ Ma forlarge Biot numbers (f. Fig.9). Taking into aount these remarks, we obtainthe �ve domains listed in table .2 and Fig.10. Correlations and boundariesbetween the di�erent domains are dedued from the previous equations. Theirderivation is detailed in the annex.At last Fig.11 shows an illustration of the saling laws in the domain B, de-dued from simulations performed for on�gurations lose to the experimentalonditions. As an be seen numerial simulations are in good agreement withsaling laws. 14



6 ConlusionIn this paper a numerial analysis of a thermal transient problem indued bysolvent evaporation in an initially isothermal �uid is onsidered. The thermalbehavior shows the suession of three steps: the �rst one, before the onset ofonvetion, is purely di�usive, the seond step orresponds to the beginningof onvetion and important variations in temperature and veloity �elds areobserved, and the last one is haraterized by a very slow evolution of thesystem towards the �nal isothermal state. The problem is desribed by fournon-dimensional parameters, Bi, Ma, Pr and Ra. Our approah takes intoaount expliitly the transient harater of the problem. A riterium basedon the Pelet number is used to haraterize the onset of onvetion. It isimportant to notie that the threshold must not be understood as a preisedelimitation between stable and unstable domains but rather as a transitiondomain, sine the obtained threshold values depend slightly on the initial per-turbation. The omplete problem (i.e. onvetion indued by thermoapillarityand buoyany) or the pure Rayleigh-Bénard and pure Bénard-Marangoni on-�guration is onsidered. It was found that the obtained thresholds do notdepend on the value of the Pr number signi�antly.Results of the non linear simulations are ompared with a linear transientstability analysis based on a non normal approah [12℄. Stability thresholdsobtained with the two approahes are very lose, whih validates the lin-ear approah for the determination of the onset of onvetion. Results alsowell ompare with experimental observations obtained from experiments ofPIB/Toluene solutions drying [13℄, for stability thresholds and onvetivestrutures wavelengths. This validates the simplifying assumptions made tosimulate the beginning of the drying where only thermal phenomena havebeen taken into aount.At last a saling analysis is developed for the quasi-steady regime in the BMon�guration. Correlations are derived to get the order of magnitude of thetemperature and veloity as a funtion of Bi, Ma and Pr numbers. Furtherdevelopments would imply to get a better desription of the oupling betweenthe liquid and the gas (two layers model) and to allow deformations of theinterfae. Other development onerns the seond part of the drying proesswhen solutal onvetion takes plae. This problem is more omplex sine theassumption of onstant physial properties and �xed interfae are no morevalid.AknowledgmentThe authors thank M. Rossi from "Institut Jean Le Rond d'Alembert, CNRS-UPMC, Frane" and T.Boek from "Tehnishe Universität Ilmenau, Ger-15
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Annex: Saling analysis: derivation of orrelations and boundariesDerivation of orrelations is detailed for domain B only, sine the method isthe same for all the domains. From equation 13 it an be seen that vx & vy,so that the order of magnitude of the Pelet number is given by vxDomain B is haraterized by ∆θ ≪ 1, δT ≪ 1 and δH ∼ 1. It is then desribedby equations 12, 13, 16 and 18. Correlations given in table .2 follows easilyfrom this set of equations with the ondition δH ∼ 1.The boundaries between the domain B and adjaent domains are obtainedin the following way: Equation 16 and ondition δT ≪ 1 gives vx ≫ 1 indomain B. Then the boundary between domain A (no onvetion, i.e. verysmall veloities) and B is obtained writing vx ∼ 1, that is Pe ∼ 1 and then
Ma Bi ∼ 1. The domains B and C di�er by the temperature di�erene ∆θwhih is lose to one in domain C. The boundary between the two domains isthen obtained writing ∆θ ∼ 1 in the orrelation ∆θ ∼ Ma−1/3Bi2/3 of domainB. In the same way, the boundary between domain B and E is obtained writing
δH ∼ 1 in the orrelation δH ∼ (Ma Bi)−1/4Pr3/8 of domain E. The otherboundary equations follow from the same kind of arguments. However, let usnote that the boundary between domains C and A dedued from saling lawsis Ma ∼ 1, while asymptotes dedued from stability analysis reads Bi ∼ Ma(in terms of order of magnitude). As previously said, saling laws have beenderived assuming the existene of the quasi-steady regime. The di�erenesbetween the two boundaries mean that the quasi-steady regime is not reahedfor points below Bi ∼ Ma.Referenes[1℄ J. Pearson, On onvetion ells indued by surfae tension, J. Fluid Meh. 4(1958) 489�500.[2℄ F. Busse, Non-linear properties of thermal onvetion, Rep. Prog. Phys. 41(1978) 1930�1967.[3℄ J. Reihenbah, H. Linde, Linear perturbation analysis of surfae-tension-drivenonvetion at a plane interfae (Marangoni instability), J. of olloid and interfaesiene 84 (1981) 433�443.[4℄ D. Goussis, R. Kelly, On the thermoapillary instabilities in a liquid layer heatedfrom below, Int J. Heat Mass Transfer 33 (1990) 2237�2245.[5℄ P. Colinet, J. C. Legros, M. G. Velarde, Nonlinear Dynamis of Surfae-Tension-Driven Instabilities, Wiley-VCH, 2001.[6℄ P. Manneville, Dynamis of Spatio-Temporal Cellular Strutures, Henri BénardCentenary Review, Springer trats in Modern Physis, 2006.17
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List of Figures.1 Visosity, experimental points and interpolation urve. 22.2 Time evolution of the temperature di�erene between thebottom and top of the layer for the onvetive model.
θ(x = A/2, y = 0, t) − θ(x = A/2, y = 1, t) (grey ontinuousline), < θ(y = 0, t) > − < θ(y = 1, t) > (blak ontinuousline), pure di�usive model (dashed dotted line)- test ase oftable 1. 22.3 Stream lines and temperature at the free surfae for t=0.5,t=0.6 and t=0.65 - test ase of table 1. 23.4 Evolution of (a) Pelet number Pe(t) and (b) Pe(t)/Pe(t = 0)for three values of the initial disturbane: r = 4, 40, 400 - testase of table 1. 23.5 Pélet number for e = 1mm and various dynami visosities. 24.6 Comparison of RBM, BM and RB on�gurations. Symbolsrefer to experimental results: no onvetion (red squares),onvetive patterns (blue stars). Lines refer to simulations:thresholds obtained with RBM on�guration (blue ontinuousline), BM on�guration (red dashed line) and RB on�guration(green dotted line). 24.7 Comparison of theory and experiments. Experimental results:same symbols than in Fig.6. Simulation thresholds obtainedwith the following riteria: linear analysis and G∗

T = 1 (reddotted line), linear analysis and G∗

V = 1 (red dashed line), nonlinear analysis and Pe = 1 (green ontinuous line). 25.8 Wavelengths of the onvetive patterns, experimental points(blue triangles) and simulations (red ross). 25.9 Comparison of ritial Marangoni obtained with linear andnon linear analysis. non linear analysis and Pr = 1 (red emptytriangles), linear analysis and Pr = 1 (red full triangles), nonlinear analysis and Pr = 1000 (blue empty irles), linearanalysis and Pr = 1000 (blue full irles). The dashed blaklines are asymptotial lines with slope +1 and -1. 26.10 Quasi-steady regime in the BM on�guration. Domains derivedfrom the saling analysis (the �gure is drawn for Pr=100). 2619



.11 Comparison of simulations and orrelations in the B domain.(a) Pe versus BiMa, simulations (rosses) and straight linewith slope 2/3, (b) Pe versus Bi2/Ma, simulations (stars) andstraight line with slope 1/3. 26
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e[mm℄ µ[mPa.s℄ Bi Pr Ma Ra1 1 0.2 12 5850 451Table .1Testase parameters.
domain ∆θ δT δH orrelationsA no onvetionB ≪ 1 ≪ 1 ∼ 1 δT ∼ (Ma.Bi)−1/3

∆θ ∼ Ma−1/3.Bi2/3, Pe ∼ (Ma.Bi)2/3C ∼ 1 ≪ 1 ∼ 1 δT ∼ Ma−1/2

Pe ∼ MaD ∼ 1 ≪ 1 ≪ 1 δT ∼ Ma−1/3.P r−1/6, δH ∼ Ma−1/3.P r1/3

Pe ∼ Ma2/3.P r1/3E ≪ 1 ≪ 1 ≪ 1 δT ∼ (Ma.Bi)−1/4.P r−1/8, δH ∼ (Ma.Bi)−1/4.P r3/8

∆θ ∼ Ma−1/4.Bi3/4.P r−1/8, Pe ∼ (Ma.Bi)1/2.P r1/4Table .2Quasi-steady regime in the BM on�guration - Correlations.
domain domain boundary equationA B Bi × Ma ∼ 1A C Bi ∼ MaB C Bi2 × Ma−1 ∼ 1B E Bi2/3 × Ma2/3 ∼ PrC D Ma ∼ PrD E Bi6 × Ma−2 ∼ PrTable .3Quasi-steady regime in the BM on�guration - boundaries between the di�erentdomains.
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