Minimal partitions and image classification using a gradient-free perimeter approximation - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2012

Minimal partitions and image classification using a gradient-free perimeter approximation

Résumé

In this paper we propose a new optimal partition algorithm and show applications to multilabel image classification problems. Possibly noisy and blurred greyscale and color images can be processed, with or without automatic update of the labels. Regularization is performed by a non standard approximation of the total interface length, which involves a system of uncoupled linear partial differential equations and shows $\Gamma$-converge properties in the set of characteristic functions. These good mathematical properties are recovered in the numerical convergence scheme.
Fichier principal
Vignette du fichier
preprint.pdf (1.17 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00690011 , version 1 (20-04-2012)
hal-00690011 , version 2 (13-03-2014)

Identifiants

  • HAL Id : hal-00690011 , version 1

Citer

Samuel Amstutz, A.A. Novotny, Nicolas van Goethem. Minimal partitions and image classification using a gradient-free perimeter approximation. 2012. ⟨hal-00690011v1⟩
330 Consultations
559 Téléchargements

Partager

More