Energy and regularity dependent stability estimates for the Gel'fand inverse problem in multidimensions
Résumé
We prove new global Hölder-logarithmic stability estimates for the Gel'fand inverse problem at fixed energy in dimension $d\geq 3$. Our estimates are given in uniform norm for coefficient difference and related stability efficiently increases with increasing energy and/or coefficient regularity. Comparisons with preceeding results in this direction are given.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...