Partitioning Harary graphs into connected subgraphs containing prescribed vertices - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2013

Partitioning Harary graphs into connected subgraphs containing prescribed vertices

Résumé

A graph G is arbitrarily partitionable (AP for short) if for every partition (n_1, n_2, ..., n_p) of |V(G)| there exists a partition (V_1, V_2, ..., V_p) of V(G) such that each V_i induces a connected subgraph of G with order n_i. If, additionally, k of these subgraphs (k <= p) each contains an arbitrary vertex of G prescribed beforehand, then G is arbitrarily partitionable under k prescriptions}(AP+k for short). Every AP+k graph on n vertices is (k+1)-connected, and thus has at least ceil(n(k+1)/2) edges. We show that there exist AP+k graphs on n vertices and ceil(n(k+1)/2) edges for every k >= 1 and n >= k.
Fichier principal
Vignette du fichier
bbs2012.pdf (312.77 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00687607 , version 1 (13-04-2012)
hal-00687607 , version 2 (20-04-2012)
hal-00687607 , version 3 (11-05-2012)
hal-00687607 , version 4 (08-08-2013)
hal-00687607 , version 5 (05-12-2014)
hal-00687607 , version 6 (15-12-2014)
hal-00687607 , version 7 (28-10-2019)

Identifiants

  • HAL Id : hal-00687607 , version 4

Citer

Olivier Baudon, Julien Bensmail, Eric Sopena. Partitioning Harary graphs into connected subgraphs containing prescribed vertices. 2013. ⟨hal-00687607v4⟩
446 Consultations
2028 Téléchargements

Partager

More