A new bound for the 2/3 conjecture - Archive ouverte HAL
Rapport (Rapport De Recherche) Année : 2012

A new bound for the 2/3 conjecture

Résumé

We show that any n-vertex complete graph with edges colored with three colors contains a set of at most four vertices such that the number of the neighbors of these vertices in one of the colors is at least 2n/3. The previous best value, proved by Erdos, Faudree, Gould, Gyárfás, Rousseau and Schelp in 1989, is 22. It is conjectured that three vertices suffice.
Fichier principal
Vignette du fichier
kls+12.pdf (206.98 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00686989 , version 1 (11-04-2012)
hal-00686989 , version 2 (03-01-2013)

Identifiants

Citer

Daniel Král', Chun-Hung Liu, Jean-Sébastien Sereni, Peter Whalen, Zelealem Yilma. A new bound for the 2/3 conjecture. [Research Report] Loria & Inria Grand Est. 2012. ⟨hal-00686989v2⟩
469 Consultations
149 Téléchargements

Altmetric

Partager

More