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A new bound for the 2/3 conjecture*

Daniel Kral’t Chun-Hung Liu? Jean-Sébastien Sereni?
Peter Whalen’ Zelealem B. Yilmal

Abstract

We show that any n-vertex complete graph with edges colored with three
colors contains a set of at most four vertices such that the number of the
neighbors of these vertices in one of the colors is at least 2n/3. The previous
best value, proved by Erdés, Faudree, Gould, Gyarfas, Rousseau and Schelp
in 1989, is 22. It is conjectured that three vertices suffice.

1 Introduction

Erdés and Hajnal [9] made the observation that for a fixed positive integer t, a
positive real €, and a graph G on n > ng vertices, there is a set of ¢ vertices that have
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a neighborhood of size at least (1 — (1 + €)(2/3)")n in either G or its complement.
They further inquired whether 2/3 may be replaced by 1/2. This was answered in
the affirmative by Erdds, Faudree, Gyarfas and Schelp [7], who not only proved the
result but also dispensed with the (1 + €) factor. They also phrased the question as
a problem of vertex domination in a multicolored graph.

Given a color ¢ in an r-coloring of the edges of the complete graph, a subset A
of the vertex set c-dominates another subset B if, for every y € B\ A, there exists a
vertex © € A such that the edge xy is colored ¢. The subset A strongly c-dominates
B if, in addition, for every y € B N A, there exists a vertex © € A such that zy is
colored c. (Thus, the two notions coincide when AN B = ().) The result of Erdés et
al. [7) may then be stated as follows.

Theorem 1. For any fixed positive integer t and any 2-coloring of the edges of the
complete graph K, on n vertices, there exist a color ¢ and a subset X of size at most
t such that all but at most n/2" vertices of K,, are c-dominated by X .

In a more general form, they asked: Given positive integers r, t, and n along
with an r-coloring of the edges of the complete graph K, on n wvertices, what is the
largest subset B of the vertices of K,, necessarily monochromatically dominated by
some t-element subset of K, ? However, in the same paper [7], the authors presented
a 3-coloring of the edges of K, — attributed to Kierstead — which shows that if
r > 3, then it is not possible to monochromatically dominate all but a small fraction
of the vertices with any fixed number ¢ of vertices. This 3-coloring is defined as
follows: the vertices of K, are partitioned into three sets V7, V5, V3 of equal sizes and
an edge xy with x € V; and y € Vj is colored ¢ if 1 <¢ < j <3 and j —4¢ < 1 while
edges between V) and V3 are colored 3. Observe that, if ¢ is fixed, then at most 2n/3
vertices may be monochromatically dominated.

In the other direction, it was shown in the follow-up paper of Erdds, Faudree,
Gould, Gyarfas, Rousseau and Schelp [8], that if ¢ > 22, then, indeed, at least 2n/3
vertices are monochromatically dominated in any 3-coloring of the edges of K,,. The
authors then ask if 22 may be replaced by a smaller number (specifically, 3). We
prove here that ¢ > 4 is sufficient.

Theorem 2. For any 3-coloring of the edges of K,,, where n > 2, there exist a color
c and a subset A of at most four vertices of K,, such that A strongly c-dominates at
least 2n/3 vertices of K,,.

In Kierstead’s coloring, the number of colors appearing on the edges incident
with any given vertex is precisely 2. As we shall see later on, this property plays
a central role in our arguments. In this regard, our proof seems to suggest that



Kierstead’s coloring is somehow extremal, giving more credence to the conjecture
that three vertices would suffice to monochromatically dominate a set of size 2n/3
in any 3-coloring of the edges of K.

We note that there exist 3-colorings of the edges of K, such that no pair of
vertices monochromatically dominate 2n/3 + O(1) vertices. This can be seen by
realizing that in a random 3-coloring, the probability that an arbitrary pair of vertices
monochromatically dominate more than 5n/9 + o(n) vertices is o(1) by Chernoff’s
bound.

Our proof of Theorem 2 utilizes the flag algebra theory introduced by Razborov,
which has recently led to numerous results in extremal graph and hypergraph theory.
In the following section, we present a brief introduction to the flag algebra framework.
The proof of Theorem 2 is presented in Section 3.

We end this introduction by pointing out another interesting question: what
happens when one increases r, the number of colors? Constructions in the vein of
that of Kierstead — for example, partitioning K, into s parts and using r = (g)
colors — show that the size of dominated sets decreases with increasing . While it
may be difficult to determine the minimum value of ¢t dominating a certain proportion
of the vertices, it would be interesting to find out whether such constructions do, in
fact, give the correct bounds.

2 Flag Algebras

Flag algebras were introduced by Razborov [23] as a tool based on the graph limit
theory of Lovasz and Szegedy [20] and Borgs et al. [5] to approach problems per-
taining to extremal graph theory. This tool has been successfully applied to various
topics, such as Turén-type problems [25], super-saturation questions [24], jumps in
hypergraphs [2], the Caccetta-Héaggkvist conjecture [17], the chromatic number of
common graphs [14] and the number of pentagons in triangle-free graphs [12, 15].
This list is far from being exhaustive and results keep coming [1, 3, 4, 6, 11, 10, 13,
16, 18, 19, 21, 22].

Let us now introduce the terminology related to flag algebras needed in this paper.
Since we deal with 3-colorings of the edges of complete graphs, we restrict our atten-
tion to this particular case. Let us define a tricolored graph to be a complete graph
whose edges are colored with 3 colors. If G is a tricolored graph, then V(G) is its
vertex-set and |G| is the number of vertices of G. Let Fy be the set of non-isomorphic
tricolored graphs with ¢ vertices, where two tricolored graphs are considered to be
isomorphic if they differ by a permutation of the vertices and a permutation of the
edge colors. (Therefore, which specific color is used for each edge is irrelevant: what
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Figure 1: The elements of F3. The edges of color 1, 2 and 3 are represented by solid,
dashed and dotted lines, respectively.

matters is whether or not pairs of edges are assigned the same color.) The elements
of F3 are shown in Figure 1. We set F = U;enIFy. Given a tricolored graph o, we
define F§ to be the set of tricolored graphs F' on ¢ vertices with a fixed embedding
of o, that is, an injective mapping v from V(o) to V(F') such that Im(r) induces
in I’ a subgraph that differs from o only by a permutation of the edge colors. The
elements of F§ are usually called o-flags within the flag algebras framework. We set
Fo = UgeNFg.

The central notions are factor algebras of F and F? equipped with addition and
multiplication. Let us start with the simpler case of F. If H € F and H' € Fy 41,
then p(H, H') is the probability that a randomly chosen subset of |H| vertices of H’
induces a subgraph isomorphic to H. For a set F', we define RF' to be the set of all
formal linear combinations of elements of F' with real coefficients. Let A := RIF and
let F be A factorised by the subspace of RIF generated by all combinations of the
form

H— Z p(H,H'YH'.
H'€F|g 41

Next, we define the multiplication on A based on the elements of F as follows.
If Hy and H, are two elements of F and H € Fy,|4|m,|, then p(H:, Hy; H) is the
probability that two randomly chosen disjoint subsets of vertices of H with sizes
|H,| and |H,| induce subgraphs isomorphic to H; and Hs, respectively. We set

Hl'Hg = Z p(Hl,H27H)H

HEF 1) |41y

The multiplication is linearly extended to RIF. Standard elementary probability
computations [23, Lemma 2.4] show that this multiplication in RIF gives rise to a
well-defined multiplication in the factor algebra A.

The definition of A7 follows the same lines. Let H and H' be two tricolored
graphs in F? with embeddings v and ¢/ of o. Informally, we consider the copy of ¢ in
H'’ and we extend it into an element of Fiy, by randomly choosing additional vertices
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in H'. We are interested in the probability that this random extension is isomorphic
to H and the isomorphism preserves the embeddings of ¢. Formally, we let p(H, H')
be the probability that v/(V(¢)) together with a randomly chosen subset of |H| — |o]|
vertices in V(H') \ v/(V(¢)) induce a subgraph that is isomorphic to H through an
isomorphism f that preserves the embeddings, that is, v/ = f orv. The set A7 is
composed of all formal real linear combinations of elements of RIF? factorised by the
subspace of RIF? generated by all combinations of the form

H- Y pHH)H.
H'€FFy

Similarly, p(Hy, Ho; H) is the probability that v(V (o)) together with two randomly

chosen disjoint subsets of |H;| — |o| and |Hy| — |o| vertices in V/(H) \ v(V (o)) induce

subgraphs isomorphic to H; and Hs, respectively, with the isomorphisms preserving

the embeddings of ¢. The definition of the product is then analogous to that in A.

Consider an infinite sequence (G;);en of tricolored graphs with an increasing
number of vertices. Recall that if H € F, then p(H,G;) is the probability that a
randomly chosen subset of |H| vertices of GG; induces a subgraph isomorphic to H.

The sequence (G;)en is convergent if p(H, G;) has a limit for every H € F. A stan-
dard argument (using Tychonoff’s theorem [26]) yields that every infinite sequence
of tricolored graphs has a convergent (infinite) subsequence.

The results presented in this and the next paragraph were established by Razborov [23].
Fix now a convergent sequence (G} );en of tricolored graphs. We set ¢(H) := lim;_,, p(H, G;)
for every H € F, and we linearly extend g to A. The obtained mapping ¢ is a homo-
morphism from A to R. Moreover, for ¢ € F and an embedding v of ¢ in G;, define
p?(H) = p(H,G;). Picking v at random thus gives rise to a random distribution of
mappings from A” to R, for each i € N. Since p(H,G;) converges (as i tends to
infinity) for every H € F, the sequence of these distributions must also converge. In
fact, q itself fully determines the random distributions of ¢ for all o. In what follows,
q° will be a randomly chosen mapping from A% to R based on the limit distribution.

Any mapping ¢° from support of the limit distribution is a homomorphism from .4
to R.

Let us now have a closer look at the relation between ¢ and ¢”. The “averaging”
operator [-] : A% — A is a linear operator defined on the elements of F? by [H] =
p- H', where H' is the (unlabeled) tricolored graph in F corresponding to H and p is
the probability that a random injective mapping from V(o) to V(H’) is an embedding
of o in H' yielding H. The key relation between g and ¢° is the following:

VH e A, q([H],) = [ () 1
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Figure 2: The elements oy, ..., 07 of F4. The edges of color 1, 2 and 3 are represented
by solid, dashed and dotted lines, respectively.

where the integration is over the probability space given by the limit random dis-
tribution of ¢°. We immediately conclude that if ¢°(H) > 0 almost surely, then
q([H],) = 0. In particular,

VH e A7, q([H?],) > 0. (2)

2.1 Particular Notation Used in our Proof

Before presenting the proof of Theorem 2, we need to introduce some notation and
several lemmas. Recall that 04, o and o¢, the elements of 3, are given in Figure 1.
For i € {A, B,C} and a triple t € {1,2,3}3, let F} be the element of F] in which
the unlabeled vertex of F} is joined by an edge of color ¢; to the image of the j-th
vertex of o; for j € {1,2,3}. Two elements of A?2 and two of .47¢ will be of interest
in our further considerations:

wp = 1655, + 165F 5, — 27T9F 5, — 44F 5, + 328F5, + 10F 5, + 421F5.,
why = —580FE, — 580F 5, + 668F 5, — 264F2, + 10F 5, + 725Ff, + 632F%,,
we = 100F, + 100FS, — 100F5; — 100F%; + 162FS, + 163F5,, and

wy = —10F, — 10F5, + 10Ff; + 10F 5, — TTF5, + 89Fy,,.

We make use of seven elements oy, ..., o7 out of the 15 elements of F4. They are
depicted in Figure 2. Fori € {1,...,7} and a quadruple d € {1,2,3}*, let I} be the
element of F7 such that the unlabeled vertex of F is joined by an edge of color d;
to the j-th vertex of o; for j € {1,2,3,4}. Ifi € {1,...,7} and ¢ € {1,2,3}, then
F, (ic) is the element of A% that is the sum of all the five-vertex o;-flags F such that
the unlabeled vertex is joined by an edge of color ¢ to at least one of the vertices of
0;, i.e., at least one of the entries of d is c.

Finally, we define Hy,..., Hy4 to be the elements of F5 in the way depicted in

Appendix A.



i=1 {=2 {=3 i=4 i=5 i=6 i=7
c=1 -1/3 0 -1/3 -1/J3 0 0 0
c=2 1/2 0 1/6 -1/3 -1/3 -1/3 0
c=3 1/2 1/2 1/2 1/2 1/2 0 0

Table 1: The values e.(o;) for i € {1,...,7} and ¢ € {1, 2, 3}.

3 Proof of Theorem 2

In this section, we prove Theorem 2 by contradiction: in a series of lemmas, we shall
prove some properties of a counterexample which eventually allow us to establish
the nonexistence of counterexamples. Specifically, we first find a number of flag
inequalities by hand and then we combine them with appropriate coefficients to
obtain a contradiction. The coefficients are found with the help of a computer.

Let G be a tricolored complete graph. For a vertex v of G, let A, be the set of
colors of the edges incident with v. Consider a sequence of graphs (Gy)ren, obtained
from G by replacing each vertex v of G with a complete graph of order k with edges
colored uniformly at random with colors in A,; the colors of the edges between the
complete graphs corresponding to the vertices v and v’ of G are assigned the color
of the edge vv’. This sequence of graphs converges asymptotically almost surely; let
gc be the corresponding homomorphism from A to R.

Let n > 2. We define a counterexample to be a tricolored graph with n vertices
such that for every color ¢ € {1,2,3}, each set W of at most four vertices strongly
c-dominates less than 2n/3 vertices of G. A counterexample readily satisfies the
following property.

Observation 3. If G is a counterexample, then every vertex is incident with edges
of at least two different colors.

In the next lemma, we establish an inequality that g satisfies if G is a counterex-
ample. To do so, define the quantity e.(o;) for ¢ € {1,...,7} and ¢ € {1,2,3} to
be 1/2 if o; contains a single edge with color ¢, —1/3 if each vertex of o; is incident
with an edge colored ¢, 1/6 if o; contains at least two edges with color ¢ and a vertex
incident with edges of a single color different from ¢, and 0, otherwise. These values
are gathered in Table 1. Let us underline that, unlike in most of the previous ap-
plications of flag algebras, we do need to deal with second-order terms (specifically,
O(1/n) terms) in our flag inequalities to establish Theorem 2.



Lemma 4. Let G be a counterexample with n vertices. For every i € {1,...,7}
and ¢ € {1,2,3}, a homomorphism qf from A% to R almost surely satisfies the
inequality
5c(ai)

n

o; 7 2
i (Flyy) < 3t

Proof. Fix i € {1,...,7} and ¢ € {1,2,3}. Consider the graph G}, for sufficiently
large k. Let (wi,ws, w3, wy) be a randomly selected quadruple of vertices of Gy
inducing a subgraph isomorphic to o;. Further, let W be the set of vertices strongly c-
dominated by {w1, ..., ws}. We show that [W| < 22 +-¢.(0;)k+o0(k) with probability
tending to one as k tends to infinity. This will establish the inequality stated in the
lemma. Indeed, it implies that for every n > 0, there exists k, such that if k > £,

then g7 (F(,)) < 2+ % + 1 with probability at least 1 — 7. As g, (F(,)) tends to
qii (F, (ic)) as k tends to infinity, we obtain the stated inequality with probability 1.

For i € {1,2,3,4}, let v; be the vertex of G corresponding to the clique W; of G,
containing w;. Let V be the set of vertices of G that are strongly c-dominated by
{v1,...,v4}. Since G is a counterexample, |V| < 2n/3, and hence, |V| < 2n/3 —1/3.
If w; and wj are joined by an edge of color ¢ and, furthermore, v; = v;/, then v; is
added to V' as well. Since V is still strongly c-dominated by a quadruple of vertices
in G (replace vj by any of its c-neighbors), it follows that |V| < 2n/3 —1/3.

The set W can contain the |V|k vertices of the cliques corresponding to the
vertices in V', and, potentially, it also contains some additional vertices if w; has
no c-neighbors among wy, ..., w,. In this case, the additional vertices in W are the
c-neighbors of w; in W;. With high probability, there are at most k/3 + o(k) such
vertices if v; is incident with edges of all three colors in G, and at most k/2 + o(k) if
v; is incident with edges of only two colors in G.

If e.(o;) = —1/3, then all the vertices wy,...,wy have a c-neighbor among
wi,...,ws and thus W contains only vertices of the cliques corresponding to the
vertices V. We conclude that |[IW] < (2ng1)k + o(k), as required.

If e.(0;) = 0, then all but one of the vertices wy, ..., w4 have a c-neighbor among
wi, ..., ws and the vertex w; that has none is incident in o; with edges of the two
colors different from c. In particular, either w; has no c-neighbors inside W; or v; is

incident with edges of three distinct colors in G. This implies that [IW| < wjto(k)
in the former case and |[W| < 2% + o(k) in the latter case. So, the bound holds.

If e.(0;) = 1/6, then all but one of the vertices among wy, . . ., w4 have a c-neighbor
among wr, . .., wy. Let w; be the exceptional vertex. Since w; has at most k/2+ o(k)
c-neighbors in W, it follows that [W] < 225 + £ + o(k).

Finally, if €.(0;) = 1/2, then two vertices w; and wj among wy, ..., w, have no

c-neighbors in {wy,...,ws}. The vertices w; and w; have at most k/2 + o(k) c-
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neighbors each in W; and Wj/, respectively. Moreover, since o; contains edges of all
three colors, one of w; and wj is incident in o; with edges of the two colors different
from c. Hence, this vertex has at most k/3 + o(k) c-neighbors in W;. We conclude
that the set T contains at most |V|k + 5k/6 + o(k) < 22 + £ + o(k) vertices. [

As a consequence of (1), we have the following corollary of Lemma 4.

Lemma 5. Let G be a counterexample with n vertices. For everyi € {1,...,7} and
c €{1,2,3} such that e.(0;) < 0, it holds that
qa( [[2@-/3 — F(ic)]]ai) > 0.
We now prove that in a counterexample, at most two colors are used to color the
edges incident with any given vertex. As we shall see, this structural property of
counterexamples directly implies their nonexistence, thereby proving Theorem 2.

Lemma 6. No counterexample contains a vertex incident with edges of all three
colors.

Proof. Let G be a counterexample and w3 € RIF5 be the sum of all elements of F5
that contain a vertex incident with at least three colors. By the definition of ¢g, the
graph G has a vertex incident with edges of all three colors if and only if g5 (ws) > 0.
Lemma 5 implies that go(H) is non-negative for each element H of A corresponding
to any column of Table 2 (in Appendix B). In addition, (2) ensures that qo(H) is
also non-negative for each element H of A corresponding to any of the first four
columns of Table 3 (in Appendix B). Note that these elements can be expressed as
elements of RF5. Summing these columns with coefficients

23457815885978657985 134730108347752975 134730108347752975
1029505785512512 7 4596007971038 7 4596007971038
15852088219609163945 196791037567187109905 33245823856447882025
514752892756256 _ 7 12354069426150144 24708138852300288 7
3956624143678293415 30762195734543710715 208160545085118359705
772129339134384 7 772129339134384 7 4118023142 48 7
74313622711306287405 48968798259015 39%?5%42688885
2 11571025024 7 14752892756256 7 1 471 27
15(%)579 7034753700092550119 85880775238292674586275361 617703471307507
32944185136400384 ? 24708138852300288 ’

respectively, yields an element wy of A given in the very last column of Table 3.
Notice that for every H € F5, the coefficient of H in —wy is at least the coefficient of
H in ws. In particular, the sum w3 +wg, which belongs to RIF5, has only non-positive
coefficients. We now view both wy and w3 as elements of A and use that g5 is a
homomorphism from A to R. First of all, gg(ws + wg) < 0. So, we derive that
ge(ws) < —qa(wp). As noted earlier, go(H) > 0 for each element H used to define
wo. Hence, since none of the above (displayed) coefficients is negative, we deduce
that go(wo) = 0. Consequently, gg(ws) < 0, which therefore implies that gg(w3) = 0.
This means that G' has no vertex incident with edges of all three colors. O



We are now in a position to prove Theorem 2, whose statement is recalled below.

Theorem 2. Let n > 2. Fvery tricolored graph with n vertices contains a subset of
at most four vertices that strongly c-dominates at least 2n/3 vertices for some color
c.

Proof. Suppose, on the contrary, that there exists a counterexample G. Recall that
A, is the set of colors that appear on the edges incident to the vertex v. Now, by
Observation 3 and Lemma 6, it holds that |A,| = 2 for every vertex v of G. Hence,
V(G) can be partitioned into three sets Vi, V5 and V3, where v € V; if and only if
i ¢ A,. Without loss of generality, assume that |V;| > |Va| > |V3|. Pick u € V; and
veVy As A, N A, = {3} for all w € V5, we observe that V5 is 3-dominated by {u}.
Similarly, V; is 3-dominated by {v}. Therefore, the set {u, v} strongly 3-dominates
V1 U Vs, which has size at least 2n/3. O

4 Concluding remarks

It is natural to ask what bound can be proven for domination with three vertices.
Here, it does not seem that the trick we used in this paper helps. We can prove only
that every tricolored graph with n vertices contains a subset of at most three vertices
that c-dominates at least 0.66117n vertices for some color c.

We believe the difficulty we face is caused by the following phenomenon. The
average number of vertices dominated by a triple isomorphic to 04 or o (see Figure 1
for notation) is bounded away from 2/3 in the graphs (G} )ren, which are described
at the beginning of Section 3, for G being the rainbow triangle. So, if any of these
two configurations is used, a tight bound cannot be proven since the inequalities
analogous to that in Lemma 5 are not tight and no triple of vertices dominates more
than 2/3 of the vertices in (G} )ren to compensate this deficiency.

We see that if we aimed to prove a tight result, we can only average over rainbow
triangles (which are isomorphic to o¢). Now consider the following graph G: start
from the disjoint union of a large clique of order 2m with all edges colored 1 and
a rainbow triangle. For i € {1,2}, join exactly m vertices of the clique to all three
vertices of the rainbow triangle by edges colored i. The obtained simple complete
graph has exactly one rainbow triangle, which dominates about half of the vertices.
Thus, the average proportion of vertices dominated by triples isomorphic to o¢ in
the graphs (G)ren is close to 1/2. This phenomenon does not occur for quadruples
of vertices.
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B Vectors Used in the Proof of Lemma 6

Table 2: The first ten vectors
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0
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0
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Table 2 — Continued from previous page

3 g g g N g g g 3 5

ol - - < - - - S <

s = & = =& =2 = = = =8

Hay  -1/90 0 0 0 0 0 0 0 0 0
Hyy -1/180 -1/180 -1/180 0 0 0  -1/360 -1/360 0 0
Hs, -1/180 -1/180  1/90 0 -1/180 1/90 1/180 -1/360 0 0
Ha 0  -1/60 -1/60 0 0 0 0 0 0 0
Hy 0 -1/90 1/180 0 0 0 -1/360 1/180 0 0
Hy 0 -1/90 -1/90  1/90 0 0 0 0 -1/90 0
Has 0 0 0 0 0 0 0 0 0 0
Hy 0 -1/180  1/90 0 0 0 1/90 -1/180 0 0
Hy 0 0 0 0 0 0 -1/180 -1/180 O 0
Hys 0 1/90  1/90 0 0 0 0 0 0 0
Hyp 0  -1/180 -1/180 0 0 0 0 0 0 0
Hy 0 0 0 -1/90 0 0 0 0 0 0
Hip 0 0 0 0 0 0 0 0 0 0
Hiy 0 0 0 -1/90 0 0 0 0 0 0
Hy o -1/90 0 0 0 1/90 -1/180 0 0 0 0
Hy 1/180 0 0 -1/180 0 0 0 0 0 0
Hy -1/180 0 0 -1/90 0 0 1/180 1/180 0 0
Hi  -1/90 0 0 0 0 0 0 0 1/45 0
Hyg o 0 0 0 0 0 0 0 0 0 0
His 0 0 0 0 0 0 0 0 0 0
Hg 0 0 0 0 0 0 0 0 0 0
Hyy 0 0 0 0  -1/180 -1/180 -1/180 -1/180 O 0
Hs; -1/180 0 0 0 -1/180 -1/180 -1/360 -1/360 0 0
Hs, -1/180 0 0 -1/180 0 0  -1/360 -1/360 0 0
Hss -1/180 0 0 0  -1/180 -1/180 0 0 1/180 0
Hsy 0 0 0 0 0 0 0 0 0 0
Hss 0 0 0 0 0 0 -1/180 -1/180 O 0
Hss 0 -1/180 -1/180 0  -1/90  -1/90 0 0 0 0
Hs; -1/180 -1/180 -1/180 0 0 0  -1/360 -1/360 0 0
Hss 0 -1/180 -1/180 0 0 0  1/360 -1/180 1/180 O
Hsy 0  -1/180 1/90 0  -1/90 -1/90 0 0 1/180 0
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Table 2 — Continued from previous page

3 g g g N g g g 3 5
ol - - < - - - S <
s = & = =& =2 = = = =8
Hey 0  -1/180 1/90 -1/180 0 0  -1/180 -1/180 0 0
He, 0  -1/180 -1/180  1/90 0 0 0 0 -1/45 0
Hg; -1/180 0 0 0 0 0  -1/360 -1/360 0 0
Hes -1/180 0 0 0 0 0 1/360 1/360 0 0
Heyt 0 0 0 0 0 0 1/90 -1/180 0 0
Hes 0 0 0 1/90 0 0  -1/360 -1/360 0 0
Hes 0  -1/180 -1/180 0 0 0 -1/180 -1/180 O 0
He; 0 -1/180 -1/180 0 0 0 0 0 0 0
Hes 0  -1/180 1/90 0 1/90 -1/180 1/360 -1/180 0 0
Hgg 1/90 -1/90 1/180 0 0 0 0 0 0 0
Hn 0 -1/180 -1/180  1/90 0 0 -1/360 1/180 0  -1/120
Hny 0 0 0 0 0 0 -1/180 -1/180 1/180 O
Hr 0 0 0 1/90 0 0 0 0 0  -1/60
Hi 0 0 0  -1/60 0 0 0 0 0 0
Hyo -1/90  1/90  1/90 -1/180 0 0 0 0 0 0
Hr  -1/45 0 0 0 0 0 0 0 0 0
Hzg  -1/90 0 0  -1/90 1/90  1/90 0 0 0 0
Hrpo -1/90 0 0 0 0 0 1/90 -1/180 0 0
Hzs  -1/90 0 0 0 0 0 0 0 0 0
Hzg  -1/90  1/45  -1/90 0  -1/180  1/90 0 0 0 0
Hgy -1/180 0 0 0  -1/180 -1/180 -1/360 -1/360 0 0
Hgi  1/90 0 0 0 0 0  1/360 -1/180 O 0
Hg, -1/180 -1/180 -1/180 0 0 0  1/180 -1/360 1/180 O
Hgs  1/90  1/60  -1/60 0 0 0 -1/360 1/180 0 0
Hgy  -1/90 0 0 0  -1/90  1/45 0 0 0 0
Hgs  -1/90 0 0 0 0 0 -1/180 1/360 -1/90 0
Hgs -1/180 -1/180 -1/180 0  -1/180 -1/180 -1/360 -1/360 0 0
Hy; 1/90 -1/180 -1/180 -1/180 -1/180 1/90 -1/360 -1/360 0 0
Hgs 1/90 -1/180 -1/180 0 1/90 -1/180 0 0  -1/90 -1/120
Hgo -1/180 -1/180 -1/180 0  1/180 1/180 -1/360 -1/360 0 0
Hyy 1/90 -1/180 -1/180 0 0 0  -1/180  1/90 0 -1/120
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g g 8 g g g g g 3 5
& & Sl 5 [ [ [ [ v
s = & = =& =2 = = = =8
& g & £ g N g S g &
(@] IC\l lC\lI .C\]. a lC\l .C\]. lC\lI .C\]. .C\].
Hyy 1/45  -1/90  -1/90 0 0 0 0 0 -1/90 0
Hys 0 0 0 0 0 0 0 0 0 0
Hys 0 0 0 0 0 0 0 0 0 0
Hoy 0 -1/180 -1/180 0  -1/90 -1/90 0 0 0 0
Hys 0 1/90 -1/180 0 0 0 1/90 -1/180 0 0
Hos 0  -1/180  1/90 0  -1/90 -1/90 0 0 1/180 0
Hyy 0 1/90 -1/180  1/90 0 0 -1/180 -1/180 O 0
Hos 0 0 0 0 0 0 0 0 -1/30 0
Hyo 0 0 0  -1/60 0 0 0 0 0 0
Hio 0 -1/90 -1/90 0 0 0 0 0 1/90 0
Hi 0 2/45  -1/45 0 0 0 0 0 0 0
Hyg 0 -1/90  -1/90 0  -1/90 -1/90 0 0 0 0
Hys 0 1/45  -1/90 0 1/90 -1/180 -1/180 -1/180 0 0
Hys 0 -1/90 -1/90 0 1/45  -1/90 0 0 -1/90 0
Hys 0 -1/90 -1/90 0 0 0 0 0 -1/90 0
Hys 0 1/45  -1/90 -1/180 -1/90  -1/90 0 0 0 0
Hyr 0 0 0 -1/45 0 0 0 0 0 0
Hys 0 0 0 -1/45 0 0 0 0 0 0
Hie O 0 0 -1/90 0 0 0 0 0 0
Hiyo O 0 0 -1/180 0 0 -1/180 -1/180 O 0
Hyi o 0 0 0  -1/180 -1/180 -1/180 1/180 -1/360 O 0
Hys 0 0 0 -1/90 0 0 0 0 0 0
Hys 0 0 0  -1/180 -1/180 -1/180 1/180 -1/360 O 0
Hys O 0 0 -1/90 0 0  1/360 -1/180 0 0
Hys 0 0 0  -1/180 -1/90 -1/90 0 0 -1/90 0
Hyg 0 0 0 -1/180 -1/90 1/180 -1/180 -1/180 O 0
Hyr 0 0 0  -1/180 -1/180 -1/180 -1/180 1/360 -1/90 0
Hps 0 0 0 1/180 0 0  -1/180 -1/180 0 0
Hyg 0 0 0 1/90 0 0  -1/360 -1/360 -1/90 -1/120
Hip 0 0 0 -1/90 0 0 0 0 0 0
Hyy 0 0 0  -1/180 -1/180 1/90 -1/180 1/360 O 0
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Table 2 — Continued from previous page

3 g g g g g g g 3 5

ol - - < - - - S <

s = & = =& =2 = = = =8

& g & £ g N g S g &

lC\lI .C\]. (@] .C\]. a lC\lI .C\]. lC\lI .C\]. .C\].

Hiy 0 0 0 -1/180 0 0  -1/360 -1/360 0 0
His 0 0 0 -1/180 0 0 -1/180 -1/180 -1/90 0
Hi 0 0 0  -1/180 0 0  -1/90 1/180 0 0
Hys 0 0 0 1/180 0 0 -1/360 -1/360 0  -1/120
Hig 0 0 0 -1/180 0 0  -1/180 -1/180 1/180 O
Hir 0 0 0 -1/180 1/180 -1/90 -1/360 -1/360 0  -1/120
Hps 0 0 0 1/90 0 0 0 0  -1/90 -1/60
Hig 0 0 0 0 0 0  -1/180 -1/180 0 0
Hizo 0 0 0 0 0 0 0 0 0 0
Hisi 0 0 0 0  -1/180 -1/180 -1/180 -1/180 O 0
Hizz 0 0 0 0 0 0 1180 -1/90 0 0
Hiss 0 0 0 0  -1/180 -1/180 -1/360 -1/360 1/180 O
Hi 0 0 0 0  -1/60 0 -1/180 -1/180 O 0
Hiss 0 0 0 0 0 -1/60 0 0 0  -1/60
Hiss 0 0 0 0  -1/90 -1/90 -1/180 -1/180 -1/90 O
Hiyr 0 0 0 0 1/90 -1/180 -1/120 0O 0 -1/120
Hiss 0 0 0 0  -1/180 -1/180 -1/180 1/360 -1/45 0
Hizy 0 0 0 0  -1/180 -1/180 -1/360 -1/360 -1/90 -1/120
Huo 0 0 0 0 0 0  -1/180  1/90 0  -1/60
Hui 0 0 0 0 0 0  -1/90 -1/90 0 0
Hus 0 0 0 0 0 0 0 0 -2/45 0




Table 3: The last six vectors

[ws - ws],, [wh-wsl,, lwe-wel,, [we wel,, | ws wo
H; 0 0 0 0 0 0
Hs 0 0 0 0 0 0
Hs 0 0 0 0 0 0
—1563854392398577199
Hy 0 0 0 0 1 6177034713075072
Hs 0 0 0 0 0 0
Hg 29161/60 101524/15 0 0 1 -1
H; 0 0 0 0 0 0
Hg 0 0 2000 20 0 0
Hy 0 0 -4000/3 -40/3 0 0
Hiyp 0 0 0 0 0 0
—10173977739002723
Hyy 1815/2 33640/3 0 0 1 FE1E5005050456
Hio 0 0 0 0 0 0
His 0 0 0 0 0 0
—734882450141728337
Hiy -242 5104 0 0 1 2316388017403152
His 0 0 0 0 0 0
Hig  -9922/15 -422/3 0 0 1 —%g%%%%%og%%%%ﬂ
—5771 84 39
Hiq 57013/60 -65634/5 0 0 1 148248833113801728
Hig 0 0 0 0 0 0
Hyo 0 0 0 0 1 —703462682135213465
3369291661677312
Hy 29161/60 101524/15 0 0 1 -1
Hy  T81/2 -37700/3 0 0 L TR
—39614888077443071
Hao -1804 -580/3 0 0 1 18531104139225216
Hos 0 0 0 0 0 0
Hoy 0 0 0 0 0 0
—15461491234942018543
g 25 8 8 197203/ 20 2043/ 20 (1) 59529953326552069120
26
H 0 0 540 77/3 1 —88140807390257339
0 : ; . . | OIS,
o . 0 : . | nRI,,
H31 37062208278450432
0 0 2000 20 0 0
52 —1570031427111652271
Hs 0 0 ot A A B v 17 28
Hsy -328/3 725/3 2000/3 20/3 1 — ST3RER30335 4694
Hss 0 0 0 0 0 0
—2040849950139277
H3sg 0 0 0 0 1 1323650295658044
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Table 3 — Continued from previous page

[[wB : wB]:IO'B [[w,B : wlB]]o'B [[wc : wc]]o—c [I:wlc' ° wlc']]o.c ‘ w3 'UJO
—324486989357699
0 0 2187/5 5929/60 1 —324486989357699
0 0 -4000/3 -40/3 0 0
/6 998615 0 0|1 e
Hy  53792/15 10/3 0 0 1 -1
Hy 0 0 0 0 0 0
Hy o 53792/15 10/3 0 0 1 -1
Hys -2492 5104 0 0 1 —24441892612%(316%%7131
Hy  -19723/60 8018 0 0 1 kit 0?114 1§%176%625
Hys 19251/20 -46426/5 0 0 1 —75792124113%32555531
Hyg 0 0 0 0 1 LR s
H -4743/20 27388 /5 0 0 | LG
47 6177034713075072
Hyg 0 0 0 0 0 0
Hyg 0 0 0 0 0 0
H 0 0 0 0 1 —102522009006261748933
HZ(I) 0 0 4401/10 6853/60 | 1 S Ik TEA AR
Hss 1331/4 244763 0 0 | LSRR
553960 131000 70000835
H53 _7157/30 72838/15 0 0 1 296497666227603456
Hsy 0 0 0 0 0 0
H 0 0 2187/5 5929/60 1 —324486989357699
sz 0 0 1630? 3 _ 89;3 | —LaesREE oy
Hs7 0 0 270 77/6 1 ‘i‘%ééié%i%éf 0?%’1
5.
—748267710 %) 07
Hsg 0 0 0 0 1 RS SRsT 3001738
Hsy 0 0 0 0 1 -1
H, 0 0 -540 _77/3 1 —127346913837154513
He 03 484303 ; Y R
Hgs 0 0 0 0 1 D8RSR (55907713
[ : : o |1
Hgs — -34522/15 316/3 0 0 1 -1
Hgg 0 0 540 77/3 1 ?%%ﬂ%%gﬁ%gﬁ?’g’
Hgy  177241/60  99856/15 0 0 1 = LS00 ] go‘ o0l
Heg 0 0 -815/3 89/6 1 3@%%3%%&3%%%%%5
Hgo 4631 /4 -18328/3 -1000/3 -10/3 1 LA T 51201
H -39153/20  105544/15 -270 -77/6 1 =583164589838:742195
H:(l) 0 / 0 / 0 0/ M o e et
Hr  -39153/10  211088/15 0 0 1 —4%;9;% é?g;?;fé%%;}w
—673764 01
H73 17391/4 114896/15 0 0 1 13236502956558944
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Table 3 — Continued from previous page

[wp - wgl,, [ws-wpl,, [we-wcl,, [we- wpl,, |ws wo
Hyy -3069/2 -38744/3 0 0 1 -1
Hrs -968 20416 0 0 1 ZOTRSTZgL N80T
Hzg  -13706/15  -92396/15 0 0 1 —§722;50§86§?933§29387
H77 0 0 0 0 1 —7%%4%%6%%1%%%1%4 5
B b g
Hrg 4631/2 -36656/3 0 0 1 18531104139225216
Hrg 0 0 0 0 1 -1
o 0 0 0 0|1 e
Hgi  -4631/15 -13904/5 0 0 1 -1
—10725188546965769537
Hgo 0 0 0 0 1 21178404730543104
Hgs 0 0 -2810/3 -39/2 1 -1
H 0 0 0 0 1 —7417316739041385395
Hgz 1331/4 24476/3 270 77/6 1 —2§;6;5§6§5g5§9;7§2* %;*3577
Hgs  -8657/30  -194687/15 -815/3 89/6 1 = (105266471
Mo s o e |1 SR
Hg, 121/3 -61190/3 2000/3 20/3 1 e
Hyy 0 0 0 0 0 0
Hys 0 0 0 0 0 0
H 0 0 19723/20 2047/20 1 —15461491234942018543
A X g VN T
Ho- 0 0 _540 77/3 e o
Hos 0 0 0 0|1 =l
5
Hgy  77841/20 111556/5 0 0 1 -1
—35834405989042100849
Hioo 10/3 105125/6 0 0 1 74124416556900364
Hio 0 0 -4000/3 -40/3 0 0
Hipg 0 0 1630/3 -89/3 1 —11089§§12§6;§9g§§’521§679
R ’ o s |1 L,
Hios 0 0 0 0 | LRGNy
Hios 0 0 11630/3 89/3 it
8236046284100096
Hyy;  107584/15 20/3 0 0 1 -2
His  30504/5 1336/3 0 0 R A EE T o
Hig  1815/2 33640/3 0 0 1 = %{3%55692%523
—8666 7196297
Hiio 0 0 0 0 1 205901115711025024
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