

A new bound for the 2/3 conjecture

Daniel Král', Chun-Hung Liu, Jean-Sébastien Sereni, Peter Whalen, Zelealem Yilma

▶ To cite this version:

Daniel Král', Chun-Hung Liu, Jean-Sébastien Sereni, Peter Whalen, Zelealem Yilma. A new bound for the 2/3 conjecture. [Research Report] Loria & Inria Grand Est. 2012. hal-00686989v2

HAL Id: hal-00686989 https://hal.science/hal-00686989v2

Submitted on 3 Jan 2013

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

A new bound for the 2/3 conjecture*

Daniel Král'[†] Chun-Hung Liu[‡] Jean-Sébastien Sereni[§]
Peter Whalen[¶] Zelealem B. Yilma^{||}

Abstract

We show that any n-vertex complete graph with edges colored with three colors contains a set of at most four vertices such that the number of the neighbors of these vertices in one of the colors is at least 2n/3. The previous best value, proved by Erdős, Faudree, Gould, Gyárfás, Rousseau and Schelp in 1989, is 22. It is conjectured that three vertices suffice.

1 Introduction

Erdős and Hajnal [9] made the observation that for a fixed positive integer t, a positive real ϵ , and a graph G on $n > n_0$ vertices, there is a set of t vertices that have

^{*}This work was done in the framework of LEA STRUCO.

[†]Institute of Mathematics, DIMAP and Department of Computer Science, University of Warwick, Coventry CV4 7AL, United Kingdom. Previous affiliation: Institute of Computer Science (IUUK), Faculty of Mathematics and Physics, Charles University, Malostranské náměstí 25, 118 00 Prague 1, Czech Republic. E-mail: D.Kral@warwick.ac.uk. The work of this author leading to this invention has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no. 259385.

[‡]School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332, USA. E-mail: cliu87@math.gatech.edu.

[§]CNRS (LORIA), Nancy, France. E-mail: sereni@kam.mff.cuni.cz. This author's work was partially supported by the French Agence Nationale de la Recherche under reference ANR 10 JCJC 0204 01.

[¶]School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332-0160, USA. E-mail: pwhalen3@math.gatech.edu.

[&]quot;LIAFA (Université Denis Diderot), Paris, France. E-mail: Zelealem.Yilma@liafa.jussieu.fr. This author's work was supported by the French Agence Nationale de la Recherche under reference ANR 10 JCJC 0204 01.

a neighborhood of size at least $(1 - (1 + \epsilon)(2/3)^t)n$ in either G or its complement. They further inquired whether 2/3 may be replaced by 1/2. This was answered in the affirmative by Erdős, Faudree, Gyárfás and Schelp [7], who not only proved the result but also dispensed with the $(1 + \epsilon)$ factor. They also phrased the question as a problem of vertex domination in a multicolored graph.

Given a color c in an r-coloring of the edges of the complete graph, a subset A of the vertex set c-dominates another subset B if, for every $y \in B \setminus A$, there exists a vertex $x \in A$ such that the edge xy is colored c. The subset A strongly c-dominates B if, in addition, for every $y \in B \cap A$, there exists a vertex $x \in A$ such that xy is colored c. (Thus, the two notions coincide when $A \cap B = \emptyset$.) The result of Erdős et al. [7] may then be stated as follows.

Theorem 1. For any fixed positive integer t and any 2-coloring of the edges of the complete graph K_n on n vertices, there exist a color c and a subset X of size at most t such that all but at most $n/2^t$ vertices of K_n are c-dominated by X.

In a more general form, they asked: Given positive integers r, t, and n along with an r-coloring of the edges of the complete graph K_n on n vertices, what is the largest subset B of the vertices of K_n necessarily monochromatically dominated by some t-element subset of K_n ? However, in the same paper [7], the authors presented a 3-coloring of the edges of K_n — attributed to Kierstead — which shows that if $r \geq 3$, then it is not possible to monochromatically dominate all but a small fraction of the vertices with any fixed number t of vertices. This 3-coloring is defined as follows: the vertices of K_n are partitioned into three sets V_1, V_2, V_3 of equal sizes and an edge xy with $x \in V_i$ and $y \in V_j$ is colored i if $1 \leq i \leq j \leq 3$ and $j - i \leq 1$ while edges between V_1 and V_3 are colored 3. Observe that, if t is fixed, then at most 2n/3 vertices may be monochromatically dominated.

In the other direction, it was shown in the follow-up paper of Erdős, Faudree, Gould, Gyárfás, Rousseau and Schelp [8], that if $t \ge 22$, then, indeed, at least 2n/3 vertices are monochromatically dominated in any 3-coloring of the edges of K_n . The authors then ask if 22 may be replaced by a smaller number (specifically, 3). We prove here that $t \ge 4$ is sufficient.

Theorem 2. For any 3-coloring of the edges of K_n , where $n \ge 2$, there exist a color c and a subset A of at most four vertices of K_n such that A strongly c-dominates at least 2n/3 vertices of K_n .

In Kierstead's coloring, the number of colors appearing on the edges incident with any given vertex is precisely 2. As we shall see later on, this property plays a central role in our arguments. In this regard, our proof seems to suggest that

Kierstead's coloring is somehow extremal, giving more credence to the conjecture that three vertices would suffice to monochromatically dominate a set of size 2n/3 in any 3-coloring of the edges of K_n .

We note that there exist 3-colorings of the edges of K_n such that no pair of vertices monochromatically dominate 2n/3 + O(1) vertices. This can be seen by realizing that in a random 3-coloring, the probability that an arbitrary pair of vertices monochromatically dominate more than 5n/9 + o(n) vertices is o(1) by Chernoff's bound.

Our proof of Theorem 2 utilizes the flag algebra theory introduced by Razborov, which has recently led to numerous results in extremal graph and hypergraph theory. In the following section, we present a brief introduction to the flag algebra framework. The proof of Theorem 2 is presented in Section 3.

We end this introduction by pointing out another interesting question: what happens when one increases r, the number of colors? Constructions in the vein of that of Kierstead — for example, partitioning K_n into s parts and using $r = \binom{s}{2}$ colors — show that the size of dominated sets decreases with increasing r. While it may be difficult to determine the minimum value of t dominating a certain proportion of the vertices, it would be interesting to find out whether such constructions do, in fact, give the correct bounds.

2 Flag Algebras

Flag algebras were introduced by Razborov [23] as a tool based on the graph limit theory of Lovász and Szegedy [20] and Borgs et al. [5] to approach problems pertaining to extremal graph theory. This tool has been successfully applied to various topics, such as Turán-type problems [25], super-saturation questions [24], jumps in hypergraphs [2], the Caccetta-Häggkvist conjecture [17], the chromatic number of common graphs [14] and the number of pentagons in triangle-free graphs [12, 15]. This list is far from being exhaustive and results keep coming [1, 3, 4, 6, 11, 10, 13, 16, 18, 19, 21, 22].

Let us now introduce the terminology related to flag algebras needed in this paper. Since we deal with 3-colorings of the edges of complete graphs, we restrict our attention to this particular case. Let us define a tricolored graph to be a complete graph whose edges are colored with 3 colors. If G is a tricolored graph, then V(G) is its vertex-set and |G| is the number of vertices of G. Let \mathbb{F}_{ℓ} be the set of non-isomorphic tricolored graphs with ℓ vertices, where two tricolored graphs are considered to be isomorphic if they differ by a permutation of the vertices and a permutation of the edge colors. (Therefore, which specific color is used for each edge is irrelevant: what

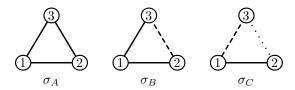


Figure 1: The elements of \mathbb{F}_3 . The edges of color 1, 2 and 3 are represented by solid, dashed and dotted lines, respectively.

matters is whether or not pairs of edges are assigned the same color.) The elements of \mathbb{F}_3 are shown in Figure 1. We set $\mathbb{F} := \bigcup_{\ell \in \mathbb{N}} \mathbb{F}_{\ell}$. Given a tricolored graph σ , we define $\mathbb{F}_{\ell}^{\sigma}$ to be the set of tricolored graphs F on ℓ vertices with a fixed embedding of σ , that is, an injective mapping ν from $V(\sigma)$ to V(F) such that $\text{Im}(\nu)$ induces in F a subgraph that differs from σ only by a permutation of the edge colors. The elements of $\mathbb{F}_{\ell}^{\sigma}$ are usually called σ -flags within the flag algebras framework. We set $\mathbb{F}^{\sigma} := \bigcup_{\ell \in \mathbb{N}} \mathbb{F}_{\ell}^{\sigma}$.

The central notions are factor algebras of \mathbb{F} and \mathbb{F}^{σ} equipped with addition and multiplication. Let us start with the simpler case of \mathbb{F} . If $H \in \mathbb{F}$ and $H' \in \mathbb{F}_{|H|+1}$, then p(H, H') is the probability that a randomly chosen subset of |H| vertices of H' induces a subgraph isomorphic to H. For a set F, we define $\mathbf{R}F$ to be the set of all formal linear combinations of elements of F with real coefficients. Let $\mathcal{A} := \mathbf{R}\mathbb{F}$ and let \mathcal{F} be \mathcal{A} factorised by the subspace of $\mathbf{R}\mathbb{F}$ generated by all combinations of the form

$$H - \sum_{H' \in \mathbb{F}_{|H|+1}} p(H, H')H'.$$

Next, we define the multiplication on \mathcal{A} based on the elements of \mathbb{F} as follows. If H_1 and H_2 are two elements of \mathbb{F} and $H \in \mathbb{F}_{|H_1|+|H_2|}$, then $p(H_1, H_2; H)$ is the probability that two randomly chosen disjoint subsets of vertices of H with sizes $|H_1|$ and $|H_2|$ induce subgraphs isomorphic to H_1 and H_2 , respectively. We set

$$H_1 \cdot H_2 := \sum_{H \in \mathbb{F}_{|H_1| + |H_2|}} p(H_1, H_2; H) H.$$

The multiplication is linearly extended to $\mathbf{R}\mathbb{F}$. Standard elementary probability computations [23, Lemma 2.4] show that this multiplication in $\mathbf{R}\mathbb{F}$ gives rise to a well-defined multiplication in the factor algebra \mathcal{A} .

The definition of \mathcal{A}^{σ} follows the same lines. Let H and H' be two tricolored graphs in \mathbb{F}^{σ} with embeddings ν and ν' of σ . Informally, we consider the copy of σ in H' and we extend it into an element of $\mathbb{F}^{\sigma}_{|H|}$ by randomly choosing additional vertices

in H'. We are interested in the probability that this random extension is isomorphic to H and the isomorphism preserves the embeddings of σ . Formally, we let p(H, H') be the probability that $\nu'(V(\sigma))$ together with a randomly chosen subset of $|H| - |\sigma|$ vertices in $V(H') \setminus \nu'(V(\sigma))$ induce a subgraph that is isomorphic to H through an isomorphism f that preserves the embeddings, that is, $\nu' = f \circ \nu$. The set \mathcal{A}^{σ} is composed of all formal real linear combinations of elements of $\mathbf{R}\mathbb{F}^{\sigma}$ factorised by the subspace of $\mathbf{R}\mathbb{F}^{\sigma}$ generated by all combinations of the form

$$H - \sum_{H' \in \mathbb{F}_{|H|+1}^{\sigma}} p(H, H')H'.$$

Similarly, $p(H_1, H_2; H)$ is the probability that $\nu(V(\sigma))$ together with two randomly chosen disjoint subsets of $|H_1| - |\sigma|$ and $|H_2| - |\sigma|$ vertices in $V(H) \setminus \nu(V(\sigma))$ induce subgraphs isomorphic to H_1 and H_2 , respectively, with the isomorphisms preserving the embeddings of σ . The definition of the product is then analogous to that in \mathcal{A} .

Consider an infinite sequence $(G_i)_{i\in\mathbb{N}}$ of tricolored graphs with an increasing number of vertices. Recall that if $H \in \mathbb{F}$, then $p(H, G_i)$ is the probability that a randomly chosen subset of |H| vertices of G_i induces a subgraph isomorphic to H. The sequence $(G_i)_{i\in\mathbb{N}}$ is convergent if $p(H, G_i)$ has a limit for every $H \in \mathbb{F}$. A standard argument (using Tychonoff's theorem [26]) yields that every infinite sequence of tricolored graphs has a convergent (infinite) subsequence.

The results presented in this and the next paragraph were established by Razborov [23]. Fix now a convergent sequence $(G_i)_{i\in\mathbb{N}}$ of tricolored graphs. We set $q(H) := \lim_{i\to\infty} p(H, G_i)$ for every $H \in \mathbb{F}$, and we linearly extend q to \mathcal{A} . The obtained mapping q is a homomorphism from \mathcal{A} to \mathbf{R} . Moreover, for $\sigma \in \mathbb{F}$ and an embedding ν of σ in G_i , define $p_i^{\nu}(H) := p(H, G_i)$. Picking ν at random thus gives rise to a random distribution of mappings from \mathcal{A}^{σ} to \mathbf{R} , for each $i \in \mathbf{N}$. Since $p(H, G_i)$ converges (as i tends to infinity) for every $H \in \mathbb{F}$, the sequence of these distributions must also converge. In fact, q itself fully determines the random distributions of q^{σ} for all σ . In what follows, q^{σ} will be a randomly chosen mapping from \mathcal{A}^{σ} to \mathbf{R} based on the limit distribution. Any mapping q^{σ} from support of the limit distribution is a homomorphism from \mathcal{A}^{σ} to \mathbf{R} .

Let us now have a closer look at the relation between q and q^{σ} . The "averaging" operator $\llbracket \cdot \rrbracket_{\sigma} : \mathcal{A}^{\sigma} \to \mathcal{A}$ is a linear operator defined on the elements of \mathbb{F}^{σ} by $\llbracket H \rrbracket_{\sigma} := p \cdot H'$, where H' is the (unlabeled) tricolored graph in \mathbb{F} corresponding to H and p is the probability that a random injective mapping from $V(\sigma)$ to V(H') is an embedding of σ in H' yielding H. The key relation between q and q^{σ} is the following:

$$\forall H \in \mathcal{A}^{\sigma}, \quad q(\llbracket H \rrbracket_{\sigma}) = \int q^{\sigma}(H), \tag{1}$$

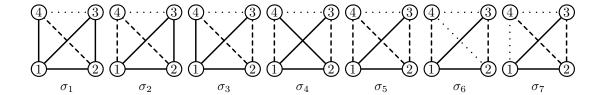


Figure 2: The elements $\sigma_1, \ldots, \sigma_7$ of \mathbb{F}_4 . The edges of color 1, 2 and 3 are represented by solid, dashed and dotted lines, respectively.

where the integration is over the probability space given by the limit random distribution of q^{σ} . We immediately conclude that if $q^{\sigma}(H) \geq 0$ almost surely, then $q(\llbracket H \rrbracket_{\sigma}) \geq 0$. In particular,

$$\forall H \in \mathcal{A}^{\sigma}, \quad q(\llbracket H^2 \rrbracket_{\sigma}) \geqslant 0. \tag{2}$$

2.1 Particular Notation Used in our Proof

Before presenting the proof of Theorem 2, we need to introduce some notation and several lemmas. Recall that σ_A , σ_B and σ_C , the elements of \mathbb{F}_3 , are given in Figure 1. For $i \in \{A, B, C\}$ and a triple $t \in \{1, 2, 3\}^3$, let F_t^i be the element of $\mathbb{F}_4^{\sigma_i}$ in which the unlabeled vertex of F_t^i is joined by an edge of color t_j to the image of the j-th vertex of σ_i for $j \in \{1, 2, 3\}$. Two elements of \mathcal{A}^{σ_B} and two of \mathcal{A}^{σ_C} will be of interest in our further considerations:

$$w_{B} := 165F_{113}^{B} + 165F_{333}^{B} - 279F_{123}^{B} - 44F_{131}^{B} + 328F_{133}^{B} + 10F_{233}^{B} + 421F_{323}^{B},$$

$$w_{B}' := -580F_{113}^{B} - 580F_{333}^{B} + 668F_{123}^{B} - 264F_{131}^{B} + 10F_{133}^{B} + 725F_{233}^{B} + 632F_{323}^{B},$$

$$w_{C} := 100F_{112}^{C} + 100F_{312}^{C} - 100F_{113}^{C} - 100F_{133}^{C} + 162F_{122}^{C} + 163F_{221}^{C}, \text{ and}$$

$$w_{C}' := -10F_{112}^{C} - 10F_{312}^{C} + 10F_{133}^{C} + 10F_{133}^{C} - 77F_{122}^{C} + 89F_{221}^{C}.$$

We make use of seven elements $\sigma_1, \ldots, \sigma_7$ out of the 15 elements of \mathbb{F}_4 . They are depicted in Figure 2. For $i \in \{1, \ldots, 7\}$ and a quadruple $d \in \{1, 2, 3\}^4$, let F_d^i be the element of $\mathbb{F}_5^{\sigma_i}$ such that the unlabeled vertex of F_d^i is joined by an edge of color d_j to the j-th vertex of σ_i for $j \in \{1, 2, 3, 4\}$. If $i \in \{1, \ldots, 7\}$ and $c \in \{1, 2, 3\}$, then $F_{(c)}^i$ is the element of \mathcal{A}^{σ_i} that is the sum of all the five-vertex σ_i -flags F_d^i such that the unlabeled vertex is joined by an edge of color c to at least one of the vertices of σ_i , i.e., at least one of the entries of d is c.

Finally, we define H_1, \ldots, H_{142} to be the elements of \mathbb{F}_5 in the way depicted in Appendix A.

	i=1	i=2	i=3	i=4	i=5	i=6	i=7
c = 1	-1/3	0	-1/3	-1/3	0	0	0
c = 2	1/2	0	1/6	-1/3	-1/3	-1/3	0
c = 3	1/2	1/2	1/2	1/2	1/2	0	0

Table 1: The values $\varepsilon_c(\sigma_i)$ for $i \in \{1, ..., 7\}$ and $c \in \{1, 2, 3\}$.

3 Proof of Theorem 2

In this section, we prove Theorem 2 by contradiction: in a series of lemmas, we shall prove some properties of a counterexample which eventually allow us to establish the nonexistence of counterexamples. Specifically, we first find a number of flag inequalities by hand and then we combine them with appropriate coefficients to obtain a contradiction. The coefficients are found with the help of a computer.

Let G be a tricolored complete graph. For a vertex v of G, let A_v be the set of colors of the edges incident with v. Consider a sequence of graphs $(G_k)_{k\in\mathbb{N}}$, obtained from G by replacing each vertex v of G with a complete graph of order k with edges colored uniformly at random with colors in A_v ; the colors of the edges between the complete graphs corresponding to the vertices v and v' of G are assigned the color of the edge vv'. This sequence of graphs converges asymptotically almost surely; let q_G be the corresponding homomorphism from A to R.

Let $n \ge 2$. We define a *counterexample* to be a tricolored graph with n vertices such that for every color $c \in \{1, 2, 3\}$, each set W of at most four vertices strongly c-dominates less than 2n/3 vertices of G. A counterexample readily satisfies the following property.

Observation 3. If G is a counterexample, then every vertex is incident with edges of at least two different colors.

In the next lemma, we establish an inequality that q_G satisfies if G is a counterexample. To do so, define the quantity $\varepsilon_c(\sigma_i)$ for $i \in \{1, ..., 7\}$ and $c \in \{1, 2, 3\}$ to be 1/2 if σ_i contains a single edge with color c, -1/3 if each vertex of σ_i is incident with an edge colored c, 1/6 if σ_i contains at least two edges with color c and a vertex incident with edges of a single color different from c, and 0, otherwise. These values are gathered in Table 1. Let us underline that, unlike in most of the previous applications of flag algebras, we do need to deal with second-order terms (specifically, O(1/n) terms) in our flag inequalities to establish Theorem 2.

Lemma 4. Let G be a counterexample with n vertices. For every $i \in \{1, ..., 7\}$ and $c \in \{1, 2, 3\}$, a homomorphism $q_G^{\sigma_i}$ from \mathcal{A}^{σ_i} to \mathbf{R} almost surely satisfies the inequality

$$q_G^{\sigma_i}(F_{(c)}^i) \leqslant \frac{2}{3} + \frac{\varepsilon_c(\sigma_i)}{n}.$$

Proof. Fix $i \in \{1, ..., 7\}$ and $c \in \{1, 2, 3\}$. Consider the graph G_k for sufficiently large k. Let (w_1, w_2, w_3, w_4) be a randomly selected quadruple of vertices of G_k inducing a subgraph isomorphic to σ_i . Further, let W be the set of vertices strongly c-dominated by $\{w_1, ..., w_4\}$. We show that $|W| \leq \frac{2nk}{3} + \varepsilon_c(\sigma_i)k + o(k)$ with probability tending to one as k tends to infinity. This will establish the inequality stated in the lemma. Indeed, it implies that for every $\eta > 0$, there exists k_{η} such that if $k > k_{\eta}$, then $q_{G_k}^{\sigma_i}(F_{(c)}^i) \leq \frac{2}{3} + \frac{\varepsilon_c(\sigma_i)}{n} + \eta$ with probability at least $1 - \eta$. As $q_{G_k}^{\sigma_i}(F_{(c)}^i)$ tends to $q_G^{\sigma_i}(F_{(c)}^i)$ as k tends to infinity, we obtain the stated inequality with probability 1.

For $i \in \{1, 2, 3, 4\}$, let v_i be the vertex of G corresponding to the clique W_i of G_k containing w_i . Let V be the set of vertices of G that are strongly c-dominated by $\{v_1, \ldots, v_4\}$. Since G is a counterexample, |V| < 2n/3, and hence, $|V| \leq 2n/3 - 1/3$. If w_j and $w_{j'}$ are joined by an edge of color c and, furthermore, $v_j = v_{j'}$, then v_j is added to V as well. Since V is still strongly c-dominated by a quadruple of vertices in G (replace $v_{j'}$ by any of its c-neighbors), it follows that $|V| \leq 2n/3 - 1/3$.

The set W can contain the |V|k vertices of the cliques corresponding to the vertices in V, and, potentially, it also contains some additional vertices if w_i has no c-neighbors among w_1, \ldots, w_4 . In this case, the additional vertices in W are the c-neighbors of w_i in W_i . With high probability, there are at most k/3 + o(k) such vertices if v_i is incident with edges of all three colors in G, and at most k/2 + o(k) if v_i is incident with edges of only two colors in G.

If $\varepsilon_c(\sigma_i) = -1/3$, then all the vertices w_1, \ldots, w_4 have a c-neighbor among w_1, \ldots, w_4 and thus W contains only vertices of the cliques corresponding to the vertices V. We conclude that $|W| \leq \frac{(2n-1)k}{3} + o(k)$, as required.

If $\varepsilon_c(\sigma_i) = 0$, then all but one of the vertices w_1, \ldots, w_4 have a c-neighbor among w_1, \ldots, w_4 and the vertex w_j that has none is incident in σ_i with edges of the two colors different from c. In particular, either w_j has no c-neighbors inside W_j or v_j is incident with edges of three distinct colors in G. This implies that $|W| \leqslant \frac{(2n-1)k}{3} + o(k)$ in the former case and $|W| \leqslant \frac{2nk}{3} + o(k)$ in the latter case. So, the bound holds.

If $\varepsilon_c(\sigma_i) = 1/6$, then all but one of the vertices among w_1, \ldots, w_4 have a c-neighbor among w_1, \ldots, w_4 . Let w_j be the exceptional vertex. Since w_j has at most k/2 + o(k) c-neighbors in W_j , it follows that $|W| \leqslant \frac{2nk}{3} + \frac{k}{6} + o(k)$.

Finally, if $\varepsilon_c(\sigma_i) = 1/2$, then two vertices w_j and $w_{j'}$ among w_1, \ldots, w_4 have no c-neighbors in $\{w_1, \ldots, w_4\}$. The vertices w_j and $w_{j'}$ have at most k/2 + o(k) c-

neighbors each in W_j and $W_{j'}$, respectively. Moreover, since σ_i contains edges of all three colors, one of w_j and $w_{j'}$ is incident in σ_i with edges of the two colors different from c. Hence, this vertex has at most k/3 + o(k) c-neighbors in W_j . We conclude that the set W contains at most $|V| k + 5k/6 + o(k) \leqslant \frac{2nk}{3} + \frac{k}{2} + o(k)$ vertices. \square

As a consequence of (1), we have the following corollary of Lemma 4.

Lemma 5. Let G be a counterexample with n vertices. For every $i \in \{1, ..., 7\}$ and $c \in \{1, 2, 3\}$ such that $\varepsilon_c(\sigma_i) \leq 0$, it holds that

$$q_G([2\sigma_i/3 - F_{(c)}^i]_{\sigma_i}) \geqslant 0.$$

We now prove that in a counterexample, at most two colors are used to color the edges incident with any given vertex. As we shall see, this structural property of counterexamples directly implies their nonexistence, thereby proving Theorem 2.

Lemma 6. No counterexample contains a vertex incident with edges of all three colors.

Proof. Let G be a counterexample and $w_3 \in \mathbf{R}\mathbb{F}_5$ be the sum of all elements of \mathbb{F}_5 that contain a vertex incident with at least three colors. By the definition of q_G , the graph G has a vertex incident with edges of all three colors if and only if $q_G(w_3) > 0$. Lemma 5 implies that $q_G(H)$ is non-negative for each element H of \mathcal{A} corresponding to any column of Table 2 (in Appendix B). In addition, (2) ensures that $q_G(H)$ is also non-negative for each element H of \mathcal{A} corresponding to any of the first four columns of Table 3 (in Appendix B). Note that these elements can be expressed as elements of $\mathbf{R}\mathbb{F}_5$. Summing these columns with coefficients

23457815885978657985	134730108347752975	134730108347752975
$\frac{1029505785512512}{15852088219609163945}$,	4596007971038, 196791037567187109905	4596007971038, 33245823856447882025
$\frac{514752892756256}{3956624143678293415}$,	$\frac{12354069426150144}{30762195734543710715},$	$24708138852300288 \ 20816545085118359705$
772129339134384, 74313622711306287405	$772129339134384 \\ 48968798259015$	$\frac{4118023142050048}{39315342699665}$,
2059011571025024 15977347300925119	$\overline{514752892756256}$, 8880723226482731	6177034713075072,
32944185136400384,	24708138852300288,	

respectively, yields an element w_0 of \mathcal{A} given in the very last column of Table 3. Notice that for every $H \in \mathbb{F}_5$, the coefficient of H in $-w_0$ is at least the coefficient of H in w_3 . In particular, the sum $w_3 + w_0$, which belongs to \mathbb{RF}_5 , has only non-positive coefficients. We now view both w_0 and w_3 as elements of \mathcal{A} and use that q_G is a homomorphism from \mathcal{A} to \mathbb{R} . First of all, $q_G(w_3 + w_0) \leq 0$. So, we derive that $q_G(w_3) \leq -q_G(w_0)$. As noted earlier, $q_G(H) \geq 0$ for each element H used to define w_0 . Hence, since none of the above (displayed) coefficients is negative, we deduce that $q_G(w_0) \geq 0$. Consequently, $q_G(w_3) \leq 0$, which therefore implies that $q_G(w_3) = 0$. This means that G has no vertex incident with edges of all three colors.

We are now in a position to prove Theorem 2, whose statement is recalled below.

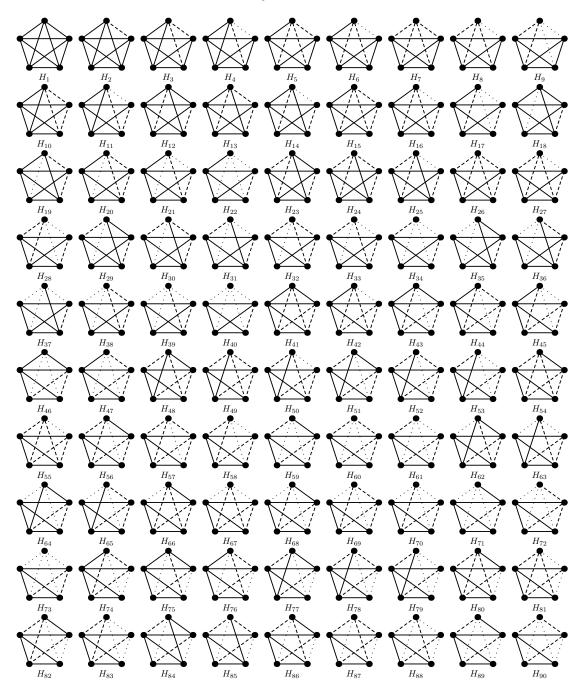
Theorem 2. Let $n \ge 2$. Every tricolored graph with n vertices contains a subset of at most four vertices that strongly c-dominates at least 2n/3 vertices for some color c.

Proof. Suppose, on the contrary, that there exists a counterexample G. Recall that A_v is the set of colors that appear on the edges incident to the vertex v. Now, by Observation 3 and Lemma 6, it holds that $|A_v| = 2$ for every vertex v of G. Hence, V(G) can be partitioned into three sets V_1 , V_2 and V_3 , where $v \in V_i$ if and only if $i \notin A_v$. Without loss of generality, assume that $|V_1| \ge |V_2| \ge |V_3|$. Pick $u \in V_1$ and $v \in V_2$. As $A_u \cap A_w = \{3\}$ for all $w \in V_2$, we observe that V_2 is 3-dominated by $\{u\}$. Similarly, V_1 is 3-dominated by $\{v\}$. Therefore, the set $\{u,v\}$ strongly 3-dominates $V_1 \cup V_2$, which has size at least 2n/3.

4 Concluding remarks

It is natural to ask what bound can be proven for domination with three vertices. Here, it does not seem that the trick we used in this paper helps. We can prove only that every tricolored graph with n vertices contains a subset of at most three vertices that c-dominates at least 0.66117n vertices for some color c.

We believe the difficulty we face is caused by the following phenomenon. The average number of vertices dominated by a triple isomorphic to σ_A or σ_B (see Figure 1 for notation) is bounded away from 2/3 in the graphs $(G_k)_{k\in\mathbb{N}}$, which are described at the beginning of Section 3, for G being the rainbow triangle. So, if any of these two configurations is used, a tight bound cannot be proven since the inequalities analogous to that in Lemma 5 are not tight and no triple of vertices dominates more than 2/3 of the vertices in $(G_k)_{k\in\mathbb{N}}$ to compensate this deficiency.


We see that if we aimed to prove a tight result, we can only average over rainbow triangles (which are isomorphic to σ_C). Now consider the following graph G: start from the disjoint union of a large clique of order 2m with all edges colored 1 and a rainbow triangle. For $i \in \{1, 2\}$, join exactly m vertices of the clique to all three vertices of the rainbow triangle by edges colored i. The obtained simple complete graph has exactly one rainbow triangle, which dominates about half of the vertices. Thus, the average proportion of vertices dominated by triples isomorphic to σ_C in the graphs $(G_k)_{k\in\mathbb{N}}$ is close to 1/2. This phenomenon does not occur for quadruples of vertices.

References

- [1] R. Baber, Turán densities of hypercubes. Submitted for publication.
- [2] R. Baber and J. Talbot, *Hypergraphs do jump*, Combin. Probab. Comput., 20 (2011), pp. 161–171.
- [3] R. Baber and J. Talbot, New Turán densities for 3-graphs, Electron. J. Combin., 19 (2012). Research Paper 22.
- [4] J. Balogh, P. Hu, B. Lidický, and H. Liu, Upper bounds on the size of 4and 6-cycle-free subgraphs of the hypercube. Submitted for publication.
- [5] C. Borgs, J. T. Chayes, L. Lovász, V. T. Sós, and K. Vesztergombi, Convergent sequences of dense graphs. I. Subgraph frequencies, metric properties and testing, Adv. Math., 219 (2008), pp. 1801–1851.
- [6] J. Cummings, D. Král', F. Pfender, K. Sperfeld, A. Treglown, and M. Young, Monochromatic triangles in three-coloured graphs. Submitted for publication.
- [7] P. ERDŐS, R. FAUDREE, A. GYÁRFÁS, AND R. H. SCHELP, Domination in colored complete graphs, J. Graph Theory, 13 (1989), pp. 713–718.
- [8] P. Erdős, R. J. Faudree, R. J. Gould, A. Gyárfás, C. Rousseau, and R. H. Schelp, *Monochromatic coverings in colored complete graphs*, in Proceedings of the Twentieth Southeastern Conference on Combinatorics, Graph Theory, and Computing (Boca Raton, FL, 1989), vol. 71 of Congr. Numer., 1990, pp. 29–38.
- [9] P. Erdős and A. Hajnal, *Ramsey-type theorems*, Discrete Appl. Math., 25 (1989), pp. 37–52. Combinatorics and complexity (Chicago, IL, 1987).
- [10] V. Falgas-Ravry and E. R. Vaughan, On applications of Razborov's flag algebra calculus to extremal 3-graph theory. Submitted for publication.
- [11] —, Turán H-densities for 3-graphs. Submitted for publication.
- [12] A. Grzesik, On the maximum number of five-cycles in a triangle-free graph, J. Comb. Theory Ser. B, 102 (2012), pp. 1061–1066.
- [13] H. HATAMI, J. HIRST, AND S. NORINE, *The inducibility of blow-up graphs*. Submitted for publication.

- [14] H. Hatami, J. Hladký, D. Král', S. Norine, and A. Razborov, *Non-three-colorable common graphs exist*, Combin. Probab. Comput., 21 (2012), pp. 734–742.
- [15] —, On the number of pentagons in triangle-free graphs, J. Combin. Theory Ser. A, (forthcoming).
- [16] J. Hirst, The inducibility of graphs on four vertices. Submitted for publication.
- [17] J. Hladký, D. Král', and S. Norine, Counting flags in triangle-free digraphs. Submitted for publication.
- [18] D. Král', L. Mach, and J.-S. Sereni, A new lower bound based on Gromov's method of selecting heavily covered points, Discrete Comput. Geom., 48 (2012), pp. 487–498.
- [19] L. Kramer, R. R. Martin, and M. Young, On diamond-free subposets of the Boolean lattice, J. Combin. Theory Ser. A, 120 (2013), pp. 545–560.
- [20] L. LOVÁSZ AND B. SZEGEDY, *Limits of dense graph sequences*, J. Combin. Theory Ser. B, 96 (2006), pp. 933–957.
- [21] O. PIKHURKO, Minimum number of k-cliques in graphs with bounded independence number. Submitted for publication.
- [22] O. Pikhurko and A. Razborov, Asymptotic structure of graphs with the minimum number of triangles. Submitted for publication.
- [23] A. RAZBOROV, Flag algebras, J. Symbolic Logic, 72 (2007), pp. 1239–1282.
- [24] —, On the minimal density of triangles in graphs, Combin. Probab. Comput., 17 (2008), pp. 603–618.
- [25] —, On 3-hypergraphs with forbidden 4-vertex configurations, SIAM J. Discrete Math., 24 (2010), pp. 946–963.
- [26] A. Tychonoff, Über die topologische erweiterung von räumen, Mathematische Annalen, 102 (1930), pp. 544–561.

A The Elements of \mathbb{F}_5

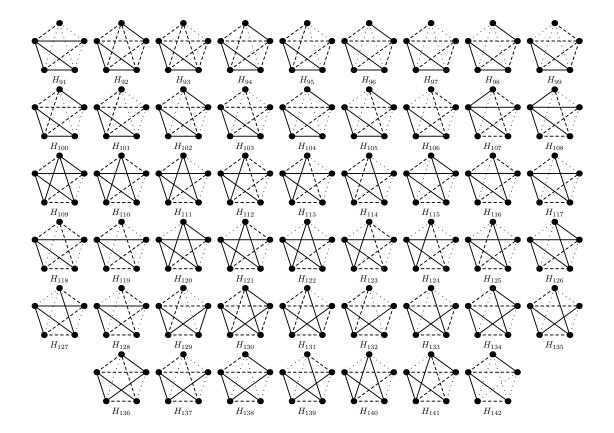


Table 2: The first ten vectors

	$-\left.F_{(1)}^{1}\right]_{\sigma_{1}}$	$\begin{bmatrix} 72 \\ (1) \end{bmatrix} \sigma_2$	$F_{(2)}^2 ight]_{\sigma_2}$	$\begin{bmatrix} 73 \\ (1) \end{bmatrix} \sigma_3$	$\left(egin{array}{c} 74 \ (1) \end{array} ight] \sigma_4$	$\left(\frac{74}{2} \right) \int_{\sigma_4}$	$egin{pmatrix} 75 \ (1) \end{bmatrix}_{\sigma_5}$	$F_{(2)}^5 ight]_{\sigma_5}$	$F^6_{(1)} brack_{\sigma_6}$	$\left[\begin{array}{c} 77 \\ 7 \end{array} \right] $
	3-F	3-I	1	3-F	I-I	3-F	3-I	1		3-I
	$\left[2\sigma_1/3 - ight]$	$\left[2\sigma_{2}/3 ight.$	$\left[2\sigma_2/3 ight]$	$\left \ 2\sigma_3/3 \right \ $	$\left \ 2\sigma_4/3 ight.$	$\left[2\sigma_4/3 ight]$	$\left[\!\left[2\sigma_{5}/3 ight. ight]$	$\left[2\sigma_5/3 ight]$	$\left[2\sigma_{6}/3 ight]$	$\left[2\sigma_{7}/3\right]$
	$\mathbb{I}_{2\epsilon}$	\mathbb{I}_{2}	\mathbb{I}_{2}	$\mathbb{I}_{2\epsilon}$	\mathbb{I}_{2}	$\mathbb{I}_{2^{\alpha}}$	\mathbb{I}_{2_k}	\mathbb{I}_{2}		$\mathbb{I}_{2^{\prime}}$
H_1	0	0	0	0	0	0	0	0	0	0
H_2	0	0	0	0	0	0	0	0	0	0
H_3	0	0	0	0	0	0	0	0	0	0
H_4	-1/90	0	0	0	0	0	0	0	0	0
H_5	0	0	0	0	0	0	0	0	0	0
H_6	-1/90	-1/180	1/90	0	0	0	0	0	0	0
H_7	0	0	0	0	0	0	0	0	0	0
H_8	0	-1/60	-1/60	0	0	0	0	0	0	0
H_9	0	-1/45	2/45	0	0	0	0	0	0	0
H_{10}	0	0	0	0	0	0	0	0	0	0
H_{11}	0	0	0	-1/90	0	0	0	0	0	0
H_{12}	0	0	0	0	0	0	0	0	0	0
H_{13}	0	0	0	0	0	0	0	0	0	0
H_{14}	-1/90	0	0	0	-1/180	1/90	0	0	0	0
H_{15}	0	0	0	0	0	0	0	0	0	0
H_{16}	-1/180	0	0	-1/180	0	0	-1/360	1/180	0	0
H_{17}	-1/90	0	0	-1/180	0	0	0	0	1/180	0
H_{18}	0	0	0	0	0	0	0	0	0	0
H_{19}	-1/180	0	0	0	0	0	1/180	-1/360	0	0
H_{20}	-1/90	1/90	-1/180	0	0	0	0	0	0	0
H_{21}	-1/180	0	0	-1/180	0	0	0	0	0	1/120
H_{22}	0	0	0	1/180	0	0	0	0	0	0
H_{23}	0	0	0	0	0	0	0	0	0	0
H_{24}	0	0	0	0	0	0	0	0	0	0
H_{25}	0	-1/180	-1/180	0	-1/90	-1/90	0	0	0	0
H_{26}	0	0	0	0	0	0	0	0	0	0
H_{27}	0	-1/180	-1/180	0	0	0	-1/180	-1/180	0	0
H_{28}	0	-1/90	-1/90	0	0	0	0	0	1/90	0

Table 2 – Continued from previous page

	σ_1	σ_2	σ_2	σ_3	σ_4	σ_4	92	σ_5	σ_6	70
	[1] (1)	(1) (1)	$ \begin{bmatrix} 2 \\ 3 \end{bmatrix} $	[1] (1)	[1] (1)	(2)	(1) (1)	(2)	$\begin{bmatrix} 36 \\ (1) \end{bmatrix}$	(2)
	_ F	_ F	_ F	<u> </u>	_ H	— F	_ F	<u> </u>	_ F	-
	3	3	/3	3	3	/3	/3	3	3	/3
	$2\sigma_1$	$2\sigma_2/$	$2\sigma_2$	$2\sigma_3/3$	$2\sigma_4/$	$2\sigma_4/$	$2\sigma_5/$	$2\sigma_5/3$	$2\sigma_6$	207
			<u></u>	<u></u>				<u></u>		
H_{29}	-1/90	0	0	0	0	0	0	0	0	0
H_{30}	-1/180	-1/180	-1/180	0	0	0	-1/360	-1/360	0	0
H_{31}	-1/180	-1/180	1/90	0	-1/180	1/90	1/180	-1/360	0	0
H_{32}	0	-1/60	-1/60	0	0	0	0	0	0	0
H_{33}	0	-1/90	1/180	0	0	0	-1/360	1/180	0	0
H_{34}	0	-1/90	-1/90	1/90	0	0	0	0	-1/90	0
H_{35}	0	0	0	0	0	0	0	0	0	0
H_{36}	0	-1/180	1/90	0	0	0	1/90	-1/180	0	0
H_{37}	0	0	0	0	0	0	-1/180	-1/180	0	0
H_{38}	0	1/90	1/90	0	0	0	0	0	0	0
H_{39}	0	-1/180	-1/180	0	0	0	0	0	0	0
H_{40}	0	0	0	-1/90	0	0	0	0	0	0
H_{41}	0	0	0	0	0	0	0	0	0	0
H_{42}	0	0	0	-1/90	0	0	0	0	0	0
H_{43}	-1/90	0	0	0	1/90	-1/180	0	0	0	0
H_{44}	1/180	0	0	-1/180	0	0	0	0	0	0
H_{45}	-1/180	0	0	-1/90	0	0	1/180	1/180	0	0
H_{46}	-1/90	0	0	0	0	0	0	0	1/45	0
H_{47}	0	0	0	0	0	0	0	0	0	0
H_{48}	0	0	0	0	0	0	0	0	0	0
H_{49}	0	0	0	0	0	0	0	0	0	0
H_{50}	0	0	0	0	-1/180	-1/180	-1/180	-1/180	0	0
H_{51}	-1/180	0	0	0	-1/180	-1/180	-1/360	-1/360	0	0
H_{52}	-1/180	0	0	-1/180	0	0	-1/360	-1/360	0	0
H_{53}	-1/180	0	0	0	-1/180	-1/180	0	0	1/180	0
H_{54}	0	0	0	0	0	0	0	0	0	0
H_{55}	0	0	0	0	0	0	-1/180	-1/180	0	0
H_{56}	0	-1/180	-1/180	0	-1/90	-1/90	0	0	0	0
H_{57}	-1/180	-1/180	-1/180	0	0	0	-1/360	-1/360	0	0
H_{58}	0	-1/180	-1/180	0	0	0	1/360	-1/180	1/180	0
H_{59}	0	-1/180	1/90	0	-1/90	-1/90	0	0	1/180	0

Table 2 – Continued from previous page

	$\left[rac{F_1}{\sigma_1} ight]_{\sigma_1}$	$\begin{bmatrix} r_1^2 \\ \vdots \end{bmatrix}_{\sigma_2}$	$F_{(2)}^2 brack _{\sigma_2}$	$\begin{bmatrix} arphi_3 \ (1) \end{bmatrix}_{\sigma_3}$	$\left[egin{array}{c} q_4 \ (1) \end{array} ight]_{\sigma_4}$	$\left[egin{array}{c} arphi_4 \ arphi_2 \end{array} ight]_{\sigma_4}$	$\begin{bmatrix} F_1^5 \\ (1) \end{bmatrix}_{\sigma_5}$	$F_{(2)}^5 brack$	$\left[egin{array}{c} F_0^6 \ \hline & 0 \end{array} ight]_{\sigma_6}$	$\left[rac{F_{1}^{7}}{\sigma_{7}} ight] _{\sigma_{7}}$
			Ì		<u> </u>	. –	<u> </u>			,
	$_{1}/3$	$2\sigma_2/3$	$2\sigma_2/3$	$2\sigma_3/3$	4/3	$\left[2\sigma_4/3 ight.$	$2\sigma_5/3$	$2\sigma_5/3$	e/3	7/3
	$\llbracket 2\sigma$	$\llbracket 2\sigma$	$\llbracket 2\sigma$	$\llbracket 2\sigma$	$\llbracket 2\sigma$	$\llbracket 2\sigma$	$\llbracket 2\sigma$	$\llbracket 2\sigma$	$\llbracket 2\sigma$	$\llbracket 2\sigma$
H_{60}	0	-1/180	1/90	-1/180	0	0	-1/180	-1/180	0	0
H_{61}	0	-1/180	-1/180	1/90	0	0	0	0	-1/45	0
H_{62}	-1/180	0	0	0	0	0	-1/360	-1/360	0	0
H_{63}	-1/180	0	0	0	0	0	1/360	1/360	0	0
H_{64}	0	0	0	0	0	0	1/90	-1/180	0	0
H_{65}	0	0	0	1/90	0	0	-1/360	-1/360	0	0
H_{66}	0	-1/180	-1/180	0	0	0	-1/180	-1/180	0	0
H_{67}	0	-1/180	-1/180	0	0	0	0	0	0	0
H_{68}	0	-1/180	1/90	0	1/90	-1/180	1/360	-1/180	0	0
H_{69}	1/90	-1/90	1/180	0	0	0	0	0	0	0
H_{70}	0	-1/180	-1/180	1/90	0	0	-1/360	1/180	0	-1/120
H_{71}	0	0	0	0	0	0	-1/180	-1/180	1/180	0
H_{72}	0	0	0	1/90	0	0	0	0	0	-1/60
H_{73}	0	0	0	-1/60	0	0	0	0	0	0
H_{74}	-1/90	1/90	1/90	-1/180	0	0	0	0	0	0
H_{75}	-1/45	0	0	0	0	0	0	0	0	0
H_{76}	-1/90	0	0	-1/90	1/90	1/90	0	0	0	0
H_{77}	-1/90	0	0	0	0	0	1/90	-1/180	0	0
H_{78}	-1/90	0	0	0	0	0	0	0	0	0
H_{79}	-1/90	1/45	-1/90	0	-1/180	1/90	0	0	0	0
H_{80}	-1/180	0	0	0	-1/180	-1/180	-1/360	-1/360	0	0
H_{81}	1/90	0	0	0	0	0	1/360	-1/180	0	0
H_{82}	-1/180	-1/180	-1/180	0	0	0	1/180	-1/360	1/180	0
H_{83}	1/90	1/60	-1/60	0	0	0	-1/360	1/180	0	0
H_{84}	-1/90	0	0	0	-1/90	1/45	0	0	0	0
H_{85}	-1/90	0	0	0	0	0	-1/180	1/360	-1/90	0
H_{86}	-1/180	-1/180	-1/180	0	-1/180	-1/180	-1/360	-1/360	0	0
H_{87}	1/90	-1/180	-1/180	-1/180	-1/180	1/90	-1/360	-1/360	0	0
H_{88}	1/90	-1/180	-1/180	0	1/90	-1/180	0	0	-1/90	-1/120
H_{89}	-1/180	-1/180	-1/180	0	1/180	1/180	-1/360	-1/360	0	0
H_{90}	1/90	-1/180	-1/180	0	0	0	-1/180	1/90	0	-1/120

Table 2 – Continued from previous page

	-	7	7	е	4	4	ις	rů.	9	2
	$= \frac{1}{\sigma}$	$\bigg]\bigg]_{\sigma_2}$					$= \frac{1}{\sigma_5}$	\bigcup_{σ_5}	= 0	
	$F_{(1)}^1$	$F_{(1)}^2$	$F_{(2)}^2$	$F_{(1)}^3$	$F_{(1)}^4$	$F_{(2)}^4$	$F_{(1)}^5$	$F_{(2)}^5$	$F^6_{(1)}$	$F_{(2)}^7$
	Ĺ	Ĺ	i i	Ĺ	Ĺ	Ĺ	ĺ	i i	Ĺ	Ĺ
	1/3	$^{2}/3$	2/3	3/3	1/3	1/3	5/3	5/3	$^{5}/3$	2/3
	2σ	$2\sigma_{c}$	2σ	$2\sigma_3$	$2\sigma_4/$	$2\sigma_c$	$\left[2\sigma_5/3 ight.$	$2\sigma_5/3$	$2\sigma_{ m (}$	2σ
$\overline{H_{91}}$	1/45	-1/90	-1/90	0	0	0	0	0	-1/90	0
H_{92}	0	0	0	0	0	0	0	0	0	0
H_{93}	0	0	0	0	0	0	0	0	0	0
H_{94}	0	-1/180	-1/180	0	-1/90	-1/90	0	0	0	0
H_{95}	0	1/90	-1/180	0	0	0	1/90	-1/180	0	0
H_{96}	0	-1/180	1/90	0	-1/90	-1/90	0	0	1/180	0
H_{97}	0	1/90	-1/180	1/90	0	0	-1/180	-1/180	0	0
H_{98}	0	0	0	0	0	0	0	0	-1/30	0
H_{99}	0	0	0	-1/60	0	0	0	0	0	0
H_{100}	0	-1/90	-1/90	0	0	0	0	0	1/90	0
H_{101}	0	2/45	-1/45	0	0	0	0	0	0	0
H_{102}	0	-1/90	-1/90	0	-1/90	-1/90	0	0	0	0
H_{103}	0	1/45	-1/90	0	1/90	-1/180	-1/180	-1/180	0	0
H_{104}	0	-1/90	-1/90	0	1/45	-1/90	0	0	-1/90	0
H_{105}	0	-1/90	-1/90	0	0	0	0	0	-1/90	0
H_{106}	0	1/45	-1/90	-1/180	-1/90	-1/90	0	0	0	0
H_{107}	0	0	0	-1/45	0	0	0	0	0	0
H_{108}	0	0	0	-1/45	0	0	0	0	0	0
H_{109}	0	0	0	-1/90	0	0	0	0	0	0
H_{110}	0	0	0	-1/180	0	0	-1/180	-1/180	0	0
H_{111}	0	0	0	-1/180	-1/180	-1/180	1/180	-1/360	0	0
H_{112}	0	0	0	-1/90	0	0	0	0	0	0
H_{113}	0	0	0	-1/180	-1/180	-1/180	1/180	-1/360	0	0
H_{114}	0	0	0	-1/90	0	0	1/360	-1/180	0	0
H_{115}	0	0	0	-1/180	-1/90	-1/90	0	0	-1/90	0
H_{116}	0	0	0	-1/180	-1/90	1/180	-1/180	-1/180	0	0
H_{117}	0	0	0	-1/180	-1/180	-1/180	-1/180	1/360	-1/90	0
H_{118}	0	0	0	1/180	0	0	-1/180	-1/180	0	0
H_{119}	0	0	0	1/90	0	0	-1/360	-1/360	-1/90	-1/120
H_{120}	0	0	0	-1/90	0	0	0	0	0	0
H_{121}	0	0	0	-1/180	-1/180	1/90	-1/180	1/360	0	0

Table 2 – Continued from previous page

	$\bigg]\bigg]_{\sigma_1}$	$\bigg)\bigg]\bigg]_{\sigma_2}$	$\bigg]\bigg]_{\sigma_2}$	$\bigg]\bigg]_{\sigma_3}$	$\bigg]\bigg]$	$\bigg]\bigg]_{\sigma_4}$	\bigcup_{σ_5}	$\bigg]\bigg]$	$\bigg]\bigg]_{\sigma_6}$	$\bigg]\bigg]_{\sigma_7}$
	$F_{(1}^1$	$F_{(1)}^2$	$F_{(2)}^2\Big]$	$F^3_{(1}$	$F_{(1)}^4$	$F_{(2)}^4 igg]$	$F_{(1)}^5$	$F_{(2)}^5igg]$	$F^6_{(1}$	$F_{(2}^7$
	1	ე		3	က 	က 			ე	ى ا
	$2\sigma_1/\sigma_1$	$2\sigma_2/3$	$2\sigma_2/3$	$2\sigma_3/3$	$2\sigma_4/$	$\left[2\sigma_4/3 ight.$	$\left[2\sigma_5/3 ight.$	$2\sigma_5/3$	$2\sigma_6/3$	72/
	$\mathbb{I}_{2\epsilon}$	\mathbb{I}_{2}	$\mathbb{I}_{2^{\alpha}}$	$\mathbb{I}_{2^{c}}$	\mathbb{I}_{2}	\mathbb{I}_{2}	$\mathbb{I}_{2\epsilon}$	\mathbb{I}_{2}	$\mathbb{I}_{2^{\alpha}}$	\mathbb{I}_{2}
H_{122}	0	0	0	-1/180	0	0	-1/360	-1/360	0	0
H_{123}	0	0	0	-1/180	0	0	-1/180	-1/180	-1/90	0
H_{124}	0	0	0	-1/180	0	0	-1/90	1/180	0	0
H_{125}	0	0	0	1/180	0	0	-1/360	-1/360	0	-1/120
H_{126}	0	0	0	-1/180	0	0	-1/180	-1/180	1/180	0
H_{127}	0	0	0	-1/180	1/180	-1/90	-1/360	-1/360	0	-1/120
H_{128}	0	0	0	1/90	0	0	0	0	-1/90	-1/60
H_{129}	0	0	0	0	0	0	-1/180	-1/180	0	0
H_{130}	0	0	0	0	0	0	0	0	0	0
H_{131}	0	0	0	0	-1/180	-1/180	-1/180	-1/180	0	0
H_{132}	0	0	0	0	0	0	1/180	-1/90	0	0
H_{133}	0	0	0	0	-1/180	-1/180	-1/360	-1/360	1/180	0
H_{134}	0	0	0	0	-1/60	0	-1/180	-1/180	0	0
H_{135}	0	0	0	0	0	-1/60	0	0	0	-1/60
H_{136}	0	0	0	0	-1/90	-1/90	-1/180	-1/180	-1/90	0
H_{137}	0	0	0	0	1/90	-1/180	-1/120	0	0	-1/120
H_{138}	0	0	0	0	-1/180	-1/180	-1/180	1/360	-1/45	0
H_{139}	0	0	0	0	-1/180	-1/180	-1/360	-1/360	-1/90	-1/120
H_{140}	0	0	0	0	0	0	-1/180	1/90	0	-1/60
H_{141}	0	0	0	0	0	0	-1/90	-1/90	0	0
H_{142}	0	0	0	0	0	0	0	0	-2/45	0

Table 3: The last six vectors

	$\llbracket w_B \cdot w_B \rrbracket_{\sigma_B}$	$\llbracket w_B' \cdot w_B' \rrbracket_{\sigma_B}$	$\llbracket w_C \cdot w_C \rrbracket_{\sigma_C}$	$\llbracket w_C' \cdot w_C' \rrbracket_{\sigma_C}$	w_3	w_0
$\overline{H_1}$	0	0	0	0	0	0
H_2	0	0	0	0	0	0
H_3	0	0	0	0	0	0
H_4	0	0	0	0	1	$\frac{-1563854392398577199}{6177034713075072}$
H_5	0	0	0	0	0	0
H_6	29161/60	101524/15	0	0	1	-1
H_7	0	0	0	0	0	0
H_8	0	0	2000	20	0	0
H_9	0	0	-4000/3	-40/3	0	0
H_{10}	0	0	0	0	0	0
H_{11}	1815/2	33640/3	0	0	1	$\frac{-10173977739002723}{55152095652456}$
H_{12}	0	0	0	0	0	0
H_{13}	0	0	0	0	0	0
H_{14}	-242	5104	0	0	1	$\frac{-734882450141728337}{2316388017403152}$
H_{15}	0	0	0	0	0	0
H_{16}	-9922/15	-422/3	0	0	1	$\frac{-5722046702587908817}{37062208278450432}$
H_{17}	57013/60	-65634/5	0	0	1	$\frac{-57717650068438077139}{148248833113801728}$
H_{18}	0	0	0	0	0	0
H_{19}	0	0	0	0	1	$\frac{-703462682135213465}{3369291661677312}$
H_{20}	29161/60	101524/15	0	0	1	-1
H_{21}	781/2	-37700/3	0	0	1	$\frac{-5891700664190917297}{148248833113801728}$
H_{22}	-1804	-580/3	0	0	1	$\frac{-32614888977443071}{18531104139225216}$
H_{23}	0	0	0	0	0	0
H_{24}	0	0	0	0	0	0
H_{25}	0	0	19723/20	2047/20	1	$\frac{-15461491234942018543}{5929953324552069120}$
H_{26}	0	0	0	0	0	0
H_{27}	0	0	540	77/3	1	$\frac{-88140807390257339}{289548502175394}$
H_{28}	10/3	105125/6	0	0	1	<u>-35834405989042100849</u> 74124416556900864
H_{29}	0	0	0	0	1	-1563854392398577199 -6177034713075072
H_{30}	0	0	270	77/6	1	$\begin{array}{r} -5456161234717178191 \\ \hline 12354069426150144 \\ -4427934211353668633 \end{array}$
H_{31}	0	0	0	0	1	$\frac{-4427934211353668633}{37062208278450432}$
H_{32}	0	0	2000	20	0	0
H_{33}	0	0	-1810/3	-97/6	1	$\frac{-1570031427111652271}{6177034713075072}$
H_{34}	-328/3	725/3	2000/3	20/3	1	<u>-327323049775204219</u> 6738583323354624
H_{35}	0	0	0	0	0	0
H_{36}	0	0	0	0	1	$\frac{-2040849950139277}{1323650295658944}$

Table 3 – Continued from previous page

$\begin{array}{c c c c c c c c c c c c c c c c c c c $				Continued fro		î	
$\begin{array}{c} H_{38} & 0 & 0 & -4000/3 & -40/3 & 0 & 0 \\ H_{39} & 177241/60 & 99856/15 & 0 & 0 & 1 & -\frac{14389006173379021}{617703473075072} \\ H_{40} & 53792/15 & 10/3 & 0 & 0 & 1 & -\frac{1}{617703473075072} \\ H_{41} & 0 & 0 & 0 & 0 & 0 & 0 \\ H_{42} & 53792/15 & 10/3 & 0 & 0 & 1 & -\frac{1}{617703473075072} \\ H_{44} & -242 & 5104 & 0 & 0 & 1 & -\frac{2444189265566217731}{3344483265566217731} \\ H_{44} & -19723/60 & 8018 & 0 & 0 & 1 & -\frac{2444189265566217731}{3344483625566217731} \\ H_{45} & 19251/20 & -46426/5 & 0 & 0 & 1 & -\frac{2444189265566217731}{3344483625566217731} \\ H_{46} & 0 & 0 & 0 & 0 & 0 & 1 & -\frac{2444189265566217731}{3344483625566217731} \\ H_{48} & 0 & 0 & 0 & 0 & 0 & 1 & -\frac{2444189265566217731}{3344483625566217731} \\ H_{48} & 0 & 0 & 0 & 0 & 0 & 1 & -\frac{2444189265566217731}{3344483625566217731} \\ H_{48} & 0 & 0 & 0 & 0 & 0 & 1 & -\frac{2444189265566217731}{3344483625566217731} \\ H_{49} & 0 & 0 & 0 & 0 & 0 & 1 & -\frac{2444189265566217731}{334499745331} \\ H_{51} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ H_{49} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ H_{50} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ H_{50} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ H_{50} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ H_{50} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ H_{55} & 1331/4 & 24476/3 & 0 & 0 & 1 & -\frac{10072000000261748333}{296497660227603456} \\ H_{54} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ H_{55} & 0 & 0 & 2187/5 & 5929/60 & 1 & -\frac{1038167076711115797}{197819147173101} \\ H_{56} & 0 & 0 & 1630/3 & -89/3 & 1 & -\frac{127486989357699}{1978145691365} \\ H_{57} & 0 & 0 & 270 & 77/6 & 1 & -\frac{232486989357699}{296497660227603456} \\ H_{66} & 0 & 0 & 0 & 0 & 0 & 1 & -\frac{127486989357699}{19781918391365} \\ H_{66} & 0 & 0 & 0 & 0 & 0 & 1 & -\frac{1274893313631728}{1978191365} \\ H_{66} & 0 & 0 & 0 & 0 & 0 & 1 & -\frac{1274893313631728}{1978191365} \\ H_{66} & 0 & 0 & 0 & 0 & 0 & 1 & -\frac{1274893313631728}{197819773} \\ H_{66} & 0 & 0 & 0 & 0 & 0 & 1 & -\frac{1274893313631728}{197819773} \\ H_{67} & 177241/60 & 99856/15 & 0 & 0 & 1 & -\frac{12748933136301728}{197819773} \\ H_{68} & 0 & 0 & 0 & 540 & 77/3 & 1 & -\frac{1274893313630173}{197819773} \\ H_{69} & 4631/4 & -18328/3$		$\llbracket w_B \cdot w_B \rrbracket_{\sigma_B}$	$\llbracket w_B' \cdot w_B' \rrbracket_{\sigma_B}$	$[\![w_C \cdot w_C]\!]_{\sigma_C}$	$\llbracket w_C' \cdot w_C' \rrbracket_{\sigma_C}$	w_3	w_0
$\begin{array}{c} H_{38} & 0 & 0 & -4000/3 & -40/3 & 0 & 0 \\ H_{39} & 177241/60 & 99856/15 & 0 & 0 & 1 & -\frac{1438906173379021}{6177034713075072} \\ H_{40} & 53792/15 & 10/3 & 0 & 0 & 1 & -1 \\ H_{41} & 0 & 0 & 0 & 0 & 0 & 0 \\ H_{42} & 53792/15 & 10/3 & 0 & 0 & 1 & -\frac{1438906173379021}{10000000000000000000000000000000000$	H_{37}	0	0	2187/5	5929/60	1	$\frac{-324486989357699}{150414806324880}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H_{38}	0	0	-4000/3	-40/3	0	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H_{39}	177241/60	99856/15	0	0	1	$\frac{-14389006173379021}{6177034713075072}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	H_{40}	53792/15	10/3	0	0	1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	H_{41}	0	0	0	0	0	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	H_{42}	53792/15	10/3	0	0	1	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	H_{43}	-242	5104	0	0	1	$\frac{-2444189262506217731}{32944185136400384}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	H_{44}	-19723/60	8018	0	0	1	<u>-130980504818216225</u> 5294601182635776
$\begin{array}{c} H_{47} \\ H_{47} \\ -4743/20 \\ -27388/5 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	H_{45}	19251/20	-46426/5	0	0	1	<u>-767941410949255531</u> 4118023142050048
$\begin{array}{c} H_{48} & 0 & 0 & 0 & 0 & 0 \\ H_{49} & 0 & 0 & 0 & 0 & 0 \\ H_{49} & 0 & 0 & 0 & 0 & 0 \\ H_{50} & 0 & 0 & 0 & 0 & 0 \\ H_{51} & 0 & 0 & 4401/10 & -6853/60 & 1 & \frac{-102522000621748933}{-296497666227603456} \\ H_{51} & 0 & 0 & 4401/10 & -6853/60 & 1 & \frac{-103816701767414115797}{-10381670176414115797} \\ H_{52} & 1331/4 & 24476/3 & 0 & 0 & 1 & \frac{-1734830760611264087}{-592497666227603456} \\ H_{53} & -7157/30 & 72838/15 & 0 & 0 & 1 & \frac{-5226417606227603456}{-52264176007668835} \\ H_{54} & 0 & 0 & 0 & 0 & 0 & 0 \\ H_{55} & 0 & 0 & 2187/5 & 5929/60 & 1 & \frac{-324486989357699}{150414806324880} \\ H_{56} & 0 & 0 & 1630/3 & -89/3 & 1 & \frac{-14870888934854103}{-124870888934854103} \\ H_{57} & 0 & 0 & 270 & 77/6 & 1 & \frac{-54661337717891}{12354060127150144} \\ H_{58} & 0 & 0 & 0 & 0 & 1 & \frac{-74227715502915007}{148248833113801728} \\ H_{59} & 0 & 0 & 0 & 0 & 1 & \frac{-74227715502915007}{148248833113801728} \\ H_{60} & 0 & 0 & -540 & -77/3 & 1 & \frac{-127346913837154513}{-1246663320113801728} \\ H_{61} & -93 & 48430/3 & 0 & 0 & 1 & \frac{-727346913837154513}{5066732649688555} \\ H_{62} & 0 & 0 & 0 & 0 & 1 & \frac{-320736163337718}{300886083431} \\ H_{64} & 0 & 0 & 0 & 0 & 1 & \frac{-3207361032937713}{30088608341} \\ H_{65} & -34522/15 & 316/3 & 0 & 0 & 1 & \frac{-32073613237713}{3008296578450132} \\ H_{66} & 0 & 0 & 540 & 77/3 & 1 & \frac{-8814080730257339}{1328650295658944} \\ H_{65} & -34522/15 & 316/3 & 0 & 0 & 1 & \frac{-11832067137713}{3008296578450132} \\ H_{67} & 177241/60 & 99856/15 & 0 & 0 & 1 & \frac{-1383037147734201}{1323650298578490132} \\ H_{68} & 0 & 0 & -815/3 & 89/6 & 1 & \frac{-32073613237125}{3008298578450132} \\ H_{69} & 4631/4 & -18328/3 & -1000/3 & -10/3 & 1 & \frac{-1383037147734201}{1323650298578393} \\ H_{70} & -39153/20 & 105544/15 & -270 & -77/6 & 1 & \frac{-5814080732773}{584642385314012} \\ H_{71} & 0 & 0 & 0 & 0 & 1 & \frac{-41729072682000192}{4142416529600000000000000000000000000000000000$	H_{46}	0	0	0	0	1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H_{47}	-4743/20	-27388/5	0	0	1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	H_{48}	0	0	0	0	0	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H_{49}	0	0	0	0	0	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H_{50}	0	0	0	0	1	$\frac{-102522009006261748933}{296497666227603456}$
$\begin{array}{c} H_{52} & 1531/4 & 24410/5 & 0 & 0 & 1 & \frac{5294601182635776}{529641570007068835} \\ H_{54} & 0 & 0 & 0 & 0 & 0 & 0 \\ H_{55} & 0 & 0 & 2187/5 & 5929/60 & 1 & \frac{-324486989357699}{150414806324880} \\ H_{56} & 0 & 0 & 1630/3 & -89/3 & 1 & \frac{150414806324880}{150414806324880} \\ H_{57} & 0 & 0 & 270 & 77/6 & 1 & \frac{-525616133471717819}{12354069426150144} \\ H_{58} & 0 & 0 & 0 & 0 & 1 & \frac{-7776}{148248833113801728} \\ H_{59} & 0 & 0 & 0 & 0 & 1 & \frac{-74826710502919507}{148248833113801728} \\ H_{60} & 0 & 0 & -540 & -77/3 & 1 & \frac{240663690119808}{240663690119808} \\ H_{61} & -93 & 48430/3 & 0 & 0 & 1 & \frac{-127346913837154513}{240663690119808} \\ H_{62} & 0 & 0 & 0 & 0 & 1 & \frac{-127346913837154513}{240663690119808} \\ H_{63} & 0 & 0 & 0 & 0 & 1 & \frac{3706220878450432}{3706220878450432} \\ H_{64} & 0 & 0 & 0 & 0 & 1 & \frac{-6238713342797713}{1323650295688944} \\ H_{65} & -34522/15 & 316/3 & 0 & 0 & 1 & \frac{-8140807390257339}{289548504327} \\ H_{66} & 0 & 0 & 540 & 77/3 & 1 & \frac{-88140807390257339}{289548501275394} \\ H_{67} & 177241/60 & 99856/15 & 0 & 0 & 1 & \frac{-61370347130350725}{1323650295688944} \\ H_{67} & 177241/60 & 99856/15 & 0 & 0 & 1 & \frac{-613703471303571205}{289548502175394} \\ H_{68} & 0 & 0 & -815/3 & 89/6 & 1 & \frac{-8140807390257339}{289548502175394} \\ H_{69} & 4631/4 & -18328/3 & -1000/3 & -10/3 & 1 & \frac{-10703471303571205}{164720925685800192} \\ H_{70} & -39153/20 & 105544/15 & -270 & -77/6 & 1 & \frac{-6387046243561301}{16472092568200192} \\ H_{71} & 0 & 0 & 0 & 0 & 1 & \frac{-613703471303571205}{16472092568200192} \\ H_{72} & -39153/10 & 211088/15 & 0 & 0 & 1 & \frac{-6137042416556900864}{-6137642435613401} \\ H_{72} & -39153/10 & 211088/15 & 0 & 0 & 1 & \frac{-6137042416556900864}{-6137642435613401} \\ H_{72} & -39153/10 & 211088/15 & 0 & 0 & 1 & \frac{-61370462435613401}{-6137662435613401} \\ H_{72} & -39153/10 & 211088/15 & 0 & 0 & 1 & \frac{-61370474742416556900864}{-6137662435613401} \\ H_{72} & -39153/10 & 211088/15 & 0 & 0 & 1 & \frac{-61370474745201}{-6137662435613401} \\ H_{73} & -137391/4 & 1148806/15 & 0 & 0 & 1 & \frac{-61370474745201}{-6137662435613401} $	H_{51}	0	0	4401/10	-6853/60	1	<u>-103810701707414113797</u>
$\begin{array}{c} H_{53} & -7131/30 & 12538/13 & 0 & 0 & 1 & \frac{296497666227603456}{296497666227603456} \\ H_{54} & 0 & 0 & 0 & 0 & 0 & 0 \\ H_{55} & 0 & 0 & 2187/5 & 5929/60 & 1 & \frac{-324486983357699}{1504148063324880} \\ H_{56} & 0 & 0 & 1630/3 & -89/3 & 1 & \frac{-14870688943483103}{5615461032371778191} \\ H_{57} & 0 & 0 & 270 & 77/6 & 1 & \frac{-51561613279552}{12354069126150144} \\ H_{58} & 0 & 0 & 0 & 0 & 1 & \frac{-7482677105502919507}{12354069126150144} \\ H_{59} & 0 & 0 & 0 & 0 & 1 & \frac{-127346913837154513}{142248833113801728} \\ H_{60} & 0 & 0 & -540 & -77/3 & 1 & \frac{-127346913837154513}{2240663690119808} \\ H_{61} & -93 & 48430/3 & 0 & 0 & 1 & \frac{-127346913837154513}{2240663690119808} \\ H_{62} & 0 & 0 & 0 & 0 & 1 & \frac{-320663690119808}{37062208278450432} \\ H_{63} & 0 & 0 & 0 & 0 & 1 & \frac{-62387193432297713}{37062208278450432} \\ H_{64} & 0 & 0 & 0 & 0 & 1 & \frac{-62387193432297713}{332650295658944} \\ H_{65} & -34522/15 & 316/3 & 0 & 0 & 1 & \frac{-217609023306544037}{1323650295658944} \\ H_{66} & 0 & 0 & 540 & 77/3 & 1 & \frac{-88140807390257339}{286480437} \\ H_{67} & 177241/60 & 99856/15 & 0 & 0 & 1 & \frac{-138900613339027}{37062208278450432} \\ H_{68} & 0 & 0 & -815/3 & 89/6 & 1 & \frac{-138900613339027}{37062208278450432} \\ H_{69} & 4631/4 & -18328/3 & -1000/3 & -10/3 & 1 & \frac{-1330371173297}{13364589385742195} \\ H_{69} & 4631/4 & -18328/3 & -1000/3 & -10/3 & 1 & \frac{-1330371173297}{1336458938742195} \\ H_{70} & -39153/20 & 105544/15 & -270 & -77/6 & 1 & \frac{-58340897755459}{16472092568200192} \\ H_{71} & 0 & 0 & 0 & 0 & 1 & \frac{-36232320887755459}{16472092568200192} \\ H_{72} & -39153/10 & 211088/15 & 0 & 0 & 1 & \frac{-623320887755459}{16472092568200192} \\ H_{72} & -39153/10 & 211088/15 & 0 & 0 & 1 & \frac{-623320887755459}{16472092568200192} \\ H_{72} & -39153/10 & 211088/15 & 0 & 0 & 1 & \frac{-623676623320887755459}{16472092568200192} \\ H_{72} & -39153/10 & 211088/15 & 0 & 0 & 1 & \frac{-623676623320887755459}{16472092568200192} \\ H_{72} & -39153/10 & 211088/15 & 0 & 0 & 1 & \frac{-623676623320887755459}{16472092568200192} \\ H_{72} & -39153/10 & 211088/15 & 0 & 0 & 1 & -62367662$	H_{52}	1331/4	24476/3	0	0	1	<u>-1794830760611264087</u> 5294601182635776
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H_{53}	-7157/30	72838/15	0	0	1	<u>-55226415700070668835</u> 296497666227603456
$\begin{array}{c} H_{56} & 0 & 0 & 1630/3 & -89/3 & 1 & \frac{150414806324880}{561548610279552} \\ H_{57} & 0 & 0 & 270 & 77/6 & 1 & \frac{-548516134717178191}{12354066425150144} \\ H_{58} & 0 & 0 & 0 & 0 & 1 & \frac{-74826771055029195907}{148248833113801728} \\ H_{59} & 0 & 0 & 0 & 0 & 1 & -\frac{74826771055029195907}{148248833113801728} \\ H_{60} & 0 & 0 & -540 & -77/3 & 1 & \frac{-127346913837154513}{240663690119808} \\ H_{61} & -93 & 48430/3 & 0 & 0 & 1 & \frac{-32063690119808}{240663690119808} \\ H_{62} & 0 & 0 & 0 & 0 & 1 & \frac{-320739160998665481}{240663690119808} \\ H_{63} & 0 & 0 & 0 & 0 & 1 & \frac{-320739160998665481}{370622928278450432} \\ H_{63} & 0 & 0 & 0 & 0 & 1 & \frac{-320739160998665481}{370622928278450432} \\ H_{64} & 0 & 0 & 0 & 0 & 1 & \frac{-217609023306544037}{370622928278450432} \\ H_{65} & -34522/15 & 316/3 & 0 & 0 & 1 & \frac{-217609023306544037}{370622928278450432} \\ H_{66} & 0 & 0 & 540 & 77/3 & 1 & \frac{-88140807390257339}{289548502175394} \\ H_{67} & 177241/60 & 99856/15 & 0 & 0 & 1 & \frac{-13389006173379021}{37062292628500192} \\ H_{68} & 0 & 0 & -815/3 & 89/6 & 1 & \frac{-1389006173379021}{16292568200192} \\ H_{69} & 4631/4 & -18328/3 & -1000/3 & -10/3 & 1 & \frac{-133073112732021}{1029305785512512} \\ H_{70} & -39153/20 & 105544/15 & -270 & -77/6 & 1 & \frac{-583464389330587755459}{16472092568200192} \\ H_{71} & 0 & 0 & 0 & 0 & 1 & \frac{-365223320887755459}{16472092568200192} \\ H_{72} & -39153/10 & 211088/15 & 0 & 0 & 1 & \frac{-41739174}{4114896/15} \\ H_{70} & 1739174 & 114896/15 & 0 & 0 & 1 & \frac{-637642336133101}{6472092568200092} \\ H_{72} & -39153/14 & 114896/15 & 0 & 0 & 1 & \frac{-637642336133101}{6472092568200092} \\ H_{72} & -39153/14 & 114896/15 & 0 & 0 & 1 & \frac{-637642336133101}{6472092568200092} \\ H_{72} & -39153/14 & 114896/15 & 0 & 0 & 1 & \frac{-637642436133101}{6472092568200092} \\ H_{72} & -39153/14 & 114896/15 & 0 & 0 & 1 & \frac{-6376424336133101}{6472092568200092} \\ H_{72} & -39153/14 & 114896/15 & 0 & 0 & 1 & \frac{-637642436133101}{6472092568200092} \\ H_{73} & -39153/14 & 114896/15 & 0 & 0 & 1 & \frac{-63764643366133101}{6472092568200092} \\ H_{73} & -39153/14 & 114896/15 &$	H_{54}	0	0	0	0	0	0
$\begin{array}{c} H_{56} \\ H_{57} \\ \hline \\ 0 \\ \hline \\ 0$	H_{55}	0	0	2187/5	5929/60	1	$\frac{-324486989357699}{150414806324880}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H_{56}	0	0	1630/3	-89/3	1	561548610279552
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H_{57}	0	0	270	77/6	1	$\frac{-5456161234717178191}{12354069426150144}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H_{58}	0	0	0	0	1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H_{59}	0	0	0	0	1	-1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H_{60}	0	0	-540	-77/3	1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	H_{61}	-93	48430/3	0	0	1	$\frac{-10466732649688555}{5294601182635776}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H_{62}	0	0	0	0	1	$\frac{-9320739160958665481}{37062208278450432}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	H_{63}	0	0	0	0	1	$\frac{-62387193432797713}{37062208278450432}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	H_{64}	0	0	0	0	1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	H_{65}	-34522/15	316/3	0	0	1	-1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H_{66}	0	0	540	77/3	1	$\frac{-88140807390257339}{289548502175394}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H_{67}	177241/60	99856/15		0	1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	H_{68}		•		,	1	
$egin{array}{cccccccccccccccccccccccccccccccccccc$	H_{69}	,	·	-1000/3	•	1	$\frac{-1330374174754201}{1029505785512512}$
H_{71} 0 0 0 0 1 $\frac{-3652233205897755459}{16472092568200192}$ H_{72} -39153/10 211088/15 0 0 1 $\frac{-3652233205897755459}{16472092568200192}$ H_{73} 17391/4 114896/15 0 0 1 $\frac{-3652233205897755459}{16472092568200192}$	H_{70}	-39153/20	105544/15	-270	-77/6	1	$\frac{-5834645898385742195}{16472092568200192}$
H_{72} -39153/10 211088/15 0 0 1 $\frac{-40194399986166687563}{74124416556900864}$ H_{72} 17391/4 114896/15 0 1 $\frac{-40194399986166687563}{74124416556900864}$	H_{71}		0	0	0	1	$\frac{-3652233205897755459}{16472092568200192}$
	H_{72}	,	,	0	0		-40194399986166687563
	H_{73}	17391/4	114896/15	0	0	1	

Table 3 – Continued from previous page

			Continuea fro		e	
	$\llbracket w_B \cdot w_B \rrbracket_{\sigma_B}$	$\llbracket w_B' \cdot w_B' \rrbracket_{\sigma_B}$	$\llbracket w_C \cdot w_C \rrbracket_{\sigma_C}$	$\llbracket w_C' \cdot w_C' \rrbracket_{\sigma_C}$	w_3	w_0
H_{74}	-3069/2	-38744/3	0	0	1	-1
H_{75}	-968	20416	0	0	1	$\frac{-206704879201250857}{441216765219648}$
H_{76}	-13706/15	-92396/15	0	0	1	$\begin{array}{r} 441216765219648 \\ -8722501888932923387 \\ \hline 16472092568200192 \end{array}$
H_{77}	0	0	0	0	1	$\frac{-703462682135213465}{1684645830838656}$
H_{78}	4631/2	-36656/3	0	0	1	$\frac{-2050765293919679467}{18531104139225216}$
H_{79}	0	0	0	0	1	-1
H_{80}	0	0	0	0	1	$\frac{-34340368851241376879}{98832555409201152}$
H_{81}	-4631/15	-13904/5	0	0	1	-1
H_{82}	0	0	0	0	1	$\frac{-10725188546965769537}{21178404730543104}$
H_{83}	0	0	-2810/3	-39/2	1	-1
H_{84}	0	0	0	o o	1	$\frac{-7417316739041385395}{18531104139225216}$
H_{85}	121/6	-30595/3	0	0	1	$\frac{-21505715322664188433}{74124416556900864}$
H_{86}	0	0	815/3	-89/6	1	$\frac{-10051575074463385}{18384031884152}$
H_{87}	1331/4	24476/3	270	77/6	1	$\frac{-2065655974432544177}{9265552069612608}$
H_{88}	-8657/30	-194687/15	-815/3	89/6	1	$\begin{array}{r} 920332209912008 \\ -10513889487465286471 \\ \hline 21178404720542104 \end{array}$
H_{89}	0	0	270	77/6	1	$\frac{-102492676367157469795}{206407666227602456}$
H_{90}	4631/4	-18328/3	-270	-77 ['] /6	1	-3470421686575164043 -148248822112801728
H_{91}	121/3	-61190/3	2000/3	20/3	1	$\frac{-12539057139644285}{8236046284100096}$
H_{92}	0	0	0 '	Ó	0	0
H_{93}	0	0	0	0	0	0
H_{94}	0	0	19723/20	2047/20	1	$\frac{-15461491234942018543}{5020053324552060120}$
H_{95}	0	0	0	0	1	5929953324552069120 -2040849950139277
H_{96}	0	0	-1630/3	89/3	1	$\begin{array}{r} \hline 1323650295658944 \\ -37632094249561791565 \\ \hline 148248833113801728 \\ \end{array}$
H_{97}	0	0	-540	-77/3	1	<u>-147229716847699567</u> 9265552069612608
H_{98}	0	0	0	0	1	$\begin{array}{r} 9265552069612608 \\ -4163309017023671941 \\ \hline 24708138852300288 \end{array}$
H_{99}	77841/20	111556/5	0	0	1	-1
H_{100}	10/3	105125/6	0	0	1	$\frac{-35834405989042100849}{74124416556900864}$
H_{101}	0	0	-4000/3	-40/3	0	0
H_{102}	0	0	1630/3	-89/3	1	$\frac{-10943236189159518679}{18531104139225216}$
H_{103}	0	0	-1630/3	89/3	1	$\begin{array}{r} 18531104139225216 \\ -244304794290394685 \\ \hline 32944185136400384 \end{array}$
H_{104}	0	0	-1630/3	89/3	1	$\begin{array}{r} 32944185136400384 \\ -6580270239524616359 \\ \hline 10589202365271552 \end{array}$
H_{105}	0	0	0	Ó	1	$\frac{-17483526616286112727}{24708138852300288}$
H_{106}	0	0	-1630/3	89/3	1	$\frac{24708138852300288}{-2389728277891266261}\\ \underline{8236046284100096}$
H_{107}	107584/15	20/3	0	Ó	1	-2
H_{108}	30504/5	1336/3	0	0	1	$\frac{-66935245670393753}{661825147829472}$
H_{109}	1815/2	33640/3	0	0	1	<u>-10173977739002723</u> 55152095652456
H_{110}	0	0	0	0	1	$\begin{array}{r} 55152095652456 \\ -866621514187196297 \\ \hline 2059011571025024 \end{array}$
						2000011011020021

Table 3 – Continued from previous page

	$\llbracket w_B \cdot w_B \rrbracket_{\sigma_B}$	$\llbracket w_B' \cdot w_B' \rrbracket_{\sigma_B}$	$\llbracket w_C \cdot w_C \rrbracket_{\sigma_C}$	$\llbracket w_C' \cdot w_C' \rrbracket_{\sigma_C}$	w_3	w_0
H_{111}	4631/4	-18328/3	0	0	1	$\frac{-7493427555720786047}{26954333293418496}$
H_{112}	-1804	-580/3	0	0	1	$\begin{array}{r} -26954333293418496 \\ -4771933910371470719 \\ \hline -9265552069612608 \end{array}$
H_{113}	-34522/15	316/3	0	0	1	$\begin{array}{r} 9265552069612608 \\ -56090180193586615063 \\ 98832555409201152 \end{array}$
H_{114}	-3069/4	-19372/3	0	0	1	98832555409201152 -6146435219180552237 9265552069612608
H_{115}	55	-42050/3	26569/60	7921/60	1	$\begin{array}{r} 9265552069612608 \\ -476307820942045182061 \\ \hline 1976651108184023040 \end{array}$
H_{116}	0	0	0	0	1	$\begin{array}{r} 1976651108184023040 \\ -19450524422641811549 \\ \hline 32944185136400384 \end{array}$
H_{117}	-93/2	24215/3	0	0	1	$\begin{array}{r} 32944185136400384 \\ -8220306420511019599 \\ \hline 42356809461086208 \end{array}$
H_{118}	-1804	-580/3	2187/5	5929/60	1	42356809461086208 -362958430331557939 92655520696126080
H_{119}	-70439/30	8177	0	0	1	$\begin{array}{r} \hline 92655520696126080 \\ -15367554150816847711 \\ \hline 49416277704600576 \end{array}$
H_{120}	1815/2	33640/3	0	0	1	$\begin{array}{r} 49416277704600576 \\ -10173977739002723 \\ \hline 55152095652456 \end{array}$
H_{121}	0	0	0	0	1	$\begin{array}{r} 55152095652456 \\ -1003343753899617143 \\ \hline 6177034713075072 \\ -2082303347082636833 \end{array}$
H_{122}	4631/4	-18328/3	0	0	1	$\begin{array}{r} -2082303347082636833 \\ \hline 92655552069612608 \\ -12006211264574547431 \end{array}$
H_{123}	-328/3	725/3	0	0	1	$\frac{-12006211264574547431}{24708138852300288}$
H_{124}	0	0	0	0	1	$\begin{array}{r} -13765701958912919 \\ \hline 2059011571025024 \\ -75624575885139732659 \end{array}$
H_{125}	-27249/10	8684/15	0	0	1	$\frac{-75624575885139732659}{148248833113801728}$
H_{126}	55	-42050/3	0	0	1	<u>-70683455524198969843</u> <u>148248833113801728_</u>
H_{127}	0	0	0	0	1	<u>-11080743495118222157</u> 21178404730543104
H_{128}	170681/60	103481/15	0	0	1	-1
H_{129}	0	0	0	0	1	$\frac{-1157293995940733471}{4632776034806304}$
H_{130}	0	0	0	0	0	0
H_{131}	0	0	4401/5	-6853/30	1	-1
H_{132}	0	0	0	0	1	$\begin{array}{c} -426427906114141689 \\ 1029505785512512 \\ -1235497822172284283 \end{array}$
H_{133}	421/6	22910/3	0	0	1	8984777764472832 8984777764472832
H_{134}	0	0	4401/5	-6853/30	1	<u>-5617524380783071181</u> <u>32944185136400384</u> 3243337507740383
H_{135}	0	0	0	0	1	<u>-26428837039774952311</u> <u>42356809461086208</u> <u>720356809461086208</u>
H_{136}	0	0	0	0	1	<u>-73815219170205621743</u> <u>148248833113801728</u>
H_{137}	0	0	0	0	1	296497666227603456 27380454701011350172
H_{138}	0	0	0	0	1	$\begin{array}{r} -37389454791911250173 \\ 296497666227603456 \\ -17214181054154995319 \end{array}$
H_{139}	421/6	22910/3	0	0	1	32944185136400384
H_{140}	0	0	0	0	1	$\begin{array}{r} -1542818265173952315 \\ \hline 8236046284100096 \\ -1157293995940733471 \end{array}$
H_{141}	0	0	0	0	1	2316388017403152
H_{142}	20/3	105125/3	0	0	1	-1