Average Competitive Learning Vector Quantization - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2012

Average Competitive Learning Vector Quantization

Luis Armando Salomon
  • Fonction : Auteur
  • PersonId : 923539
Jean-Claude Fort
Li-Vang Lozada Chang
  • Fonction : Auteur
  • PersonId : 923493

Résumé

We propose a new algorithm for vector quantization:Average Competitive Learning Vector Quantization(ACLVQ). It is a rather simple modi cation of the classical Competitive Learning Vector Quantization(CLVQ). This new formulation gives us similar results for the quantization error to those obtained by the CLVQ and reduce considerably the computation time to achieve the optimal quantizer. We establish the convergence of the method via the Kushner-Clark approach, and compare the two algorithms via the central limit Theorem. A simulation study is carried out showing the good performance of our proposal.
Fichier principal
Vignette du fichier
ACLVQ_4.pdf (373.46 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00685960 , version 1 (06-04-2012)

Identifiants

  • HAL Id : hal-00685960 , version 1

Citer

Luis Armando Salomon, Jean-Claude Fort, Li-Vang Lozada Chang. Average Competitive Learning Vector Quantization. 2012. ⟨hal-00685960⟩
132 Consultations
287 Téléchargements

Partager

More