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Abstract

We propose a new algorithm for vector quantization:Average Competitive
Learning Vector Quantization(ACLVQ). It is a rather simple modification
of the classical Competitive Learning Vector Quantization(CLVQ). This new
formulation gives us similar results for the quantization error to those ob-
tained by the CLVQ and reduce considerably the computation time to achieve
the optimal quantizer. We establish the convergence of the method via the
Kushner-Clark approach, and compare the two algorithms via the central
limit Theorem. A simulation study is carried out showing the good perfor-
mance of our proposal.

Keywords: Optimal quantization, Stochastic algorithms, Asymptotic
convergence, Kushner-Clark method.
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1. Introduction

The quantization problem comes from the theory of signal processing
in electrical engineering in the late 1940’s. More precisely the quantiza-
tion of probability distributions is related to the best approximation of a d-
dimensional probability distribution P by a discrete probability distribution
with finite support. The mathematical aspects of quantization are treated
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extensively in ? ]. This theory has been applied in several areas such as
cluster analysis, pattern recognition, finance and numerical probability. For
a detailed exposition on the applications of vector quantization we refer the
reader to ? ], ? ], ? ], ? ] and references therein.

Searching an optimal quantizer is one of the main interest on this frame-
work. Only for a few cases the close form is known. It is posible to compute
the optimal quantizer at level n in one dimension as the solution of a sta-
tionarity equation either by a zero search method (Newton-Raphson gradient
descent) or a fixed point procedure (like the Lloyd I procedure). In higher
dimensions, deterministic gradient descent methods become intractable and
one uses Lloyd I procedure and/or stochastic procedures to compute optimal
quantizers (see for instance ? ]).

The basic stochastic approximation algorithms was introduced in the
1950s by the works of Robbins and Monro. The stochastic gradient method
(i.e. a method of minima searching using the gradient) is based on the in-
tegral representation of the criterion to be optimized and can be seen as a
particular case of the Robbins-Monro algorithm (see ? ? ] for instance).

The Competitive Learning Vector Quantization (CLVQ) is an on-line al-
gorithm that can be seen as a particular case of the “stochastic gradient
method with decreasing step”. A good reference here is ? ]. We also refer
the reader to ? ] where the authors give a detailed exposition of the applica-
tion of the CLVQ. In ? ], ? ], ? ] and references therein we can found several
variations around the CLVQ method.

The classical formulation of the CLVQ method has two phases: competi-
tive and learning. The first one is the most time consuming, because it uses
at each step a closest neighbor search to find the nearest point to the random
vector generated at each iteration of the method. The second phase only ac-
tualizes the value of the quantizer. The performance of a vector quantization
system depends on the composition of the codebook, the criteria to find an
optimal quantizer and the calculations performed in order to find the best
solution.

We propose a close algorithm to the CLVQ: Average Competitive Learning
Vector Quantization. The advantage of using our proposal lies in the fact that
we reduce the computation time for the obtention of optimal or stationary
quantizers. We emphasize that our proposal attains similar results regarding
the quantization error to those obtained by the CLVQ. Our method introduce
a slight Lloyd modification in competitive phase to find the “winning index”
which allows to reduce considerably the time and amount of calculations.
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The rest of article is organized as follows. Next section describes the
CLVQ and ACLVQ algorithms. There we recall briefly the approach of
Kushner-Clark in the framework of stochastic algorithms. Section 3 is de-
voted to the proof of the convergence of ACLVQ algorithm. Section 4 shows
the performance of our proposal by numerical experiments. Finally in Section
5 the conclusions are presented.

2. The Average Competitive Learning Vector Quantization.

2.1. Quadratic vector quantization.

Let us denote by P the target probability distribution and O = {x ∈
(Rd)n,∀i 6= j, xi 6= xj}. We assume that P is diffuse, with a moment of
order 2 + δ, δ > 0. This assumption ensures that P(x ∈ O) = 1. Throughout
this work we will assume that our algorithms lives in O.

Let X be a square integrable Rd-valued random vector with distribution
P defined on a probability space (Ω,F ,P). For n ∈ N, let Qn be the set of all
Borel measurable maps f : Rd → α = {x1, · · · , xn} ⊂ Rd with |f(Rd)| ≤ n
(where |A| denote the cardinal of the set A). The elements of Qn are called
n-quantizers.

Among all Borel functions f ∈ Qn the one with the best properties is
that obtained by the rule of closest neighbour:

f(X) =
n∑
i=1

xi1Ci(X)(X),

where {Ci(X)}1≤i≤n is a Voronöı partition for Rd satisfying

Ci(X) ⊂ {x ∈ Rd : ||x− xi|| = min
1≤j≤n

||x− xj||}.

Every n-quantizer induce an error.

Definition 2.1. The n-th quadratic quantization error for X is defined by

en(X) = inf
{

(Emin
a∈α
||X − a||2)1/2 : α ⊂ Rd, |α| ≤ n

}
.

We said that α is the optimal n-quantizer for X if

en(X) =

(
E min

1≤j≤n
||X − xj||2

)1/2

.

Finding an optimal quantizer could be a hard task for some distributions.
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Definition 2.2. Stationary quantizers. A n-quantizer X̂α is called sta-
tionary if any of the two following conditions are satisfied:

1. If X̂α is a nearest neighbour projection that satisfies

X̂α = E(X|X̂α). (1)

2. If X̂α is a critical point of the distortion, i.e.:

∇en(X̂α) = 0.

Obviously an optimal n-quantizer is always n-stationary.

2.2. The classical Competitive Learning Vector Quantization

In applications, one generally prefers recursive algorithms, owing to their
relative computational simplicity. Each successive estimate is obtained as a
simple function of the last estimate and the current observation. Compet-
itive Learning Vector Quantization is a classical example of these recursive
methods. The general formulation of the CLVQ algorithm can be described
briefly as follows.

CLVQ scheme.

1. Generate the initial n-quantizers x1
0, · · · , xn0 .

2. Generate (independently) a random vector ξ with distribution P.

3. Find the winning index (competitive phase)

i0(k + 1) = arg min
i
‖xik − ξ‖2.

4. Update the quantizers (learning phase)
xik+1 = xik − γk+1(xik − ξ), i = i0(k + 1)

xik+1 = xik, i 6= i0(k + 1)
.

5. Repeat steps 2-4 until to satisfy some convergence criteria.

As we mentioned before this method is a “stochastic gradient method
with decreasing step”. Thus the previous scheme could be written under
that theory.
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Definition 2.3. Stochastic gradient method. Let g be a twice differen-
tiable function from E to R such that dg has an integral representation on
E with respect to P, i.e.:

dg(x) =

∫
Rd

dG(x, ξ)P(dξ),

with dG : E × Rd → R, dG(x, ·) ∈ L1(P) for every x ∈ E. The stochastic
gradient method is defined by a triplet of sequences ((Xk)k≥0, (ξk)k≥1, (γk)k≥1)
with values respectively in E, Rd and R+ satisfying for every k ≥ 1 that

Xk+1 = Xk − γk+1dG(Xk, ξk+1),

where (ξk)k≥1 are i.i.d random variables with distribution P and (γk)k≥1 is
a decreasing positive deterministic sequence going to zero such that

∑
γk =

+∞.

The theorem which ensures the convergence of such algorithms reads as fol-
lows.

Theorem 2.1. Convergence a.s. Let g : E → R+ be a continuously
differentiable function whose differential dg admits an integral representation
on E with respect to P

dg(x) =

∫
Rd

dG(x, ξ)P(dξ).

Assume that dg and dG satisfy

lim
|x|→+∞

g(x) = +∞ and dg is Lipschitz continuous,

dg(x) = O(g(x)), when |x| → +∞.
Let ((Xk)n≥0, (ξk)k≥1, (γk)k≥1) be a stochastic gradient method with a positive
gain parameter sequence satisfying∑

k≥1

γk = +∞,
∑
k≥1

γ2
k < +∞.

Then g(Xk) a.s. converges to some nonnegative random variable g∞ and
Xk a.s. converges toward some random connected component χ∗ of {dg =
0} ∩ {g = g∞}. In particular, if {dg = 0} is a finite set, with probability 1 it
exists an x∗ ∈ {dg = 0} such that:

Xk → x∗ when k → +∞.
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In general we can not ensure that the algorithm converges to a global
minimum. In higher dimension, uniqueness of stationary quantizers clearly
often fails (see ? ]), so that the CLVQ reaches, a priori, only locally optimal
quantizers. Even if using a procedure of Lloyd the numerical precision can
be improved, there is no reason to suppose that the obtained quantizers are
the optimal ones.

One crucial fact for this kind of algorithms is the choice of the gain se-
quence. Usually some heuristic methods are made attending to the distribu-
tion P to quantize (see ? ]). For instance, a gain sequence (γk)k≥1 usually
used is

γk = γ0
a

a+ (γ0bk)c
,

for some constants γ0, a, b and c. That is the gain sequence used in the
numerical experiments presented in Section 4.

When we know the a.s. convergence of the algorithm toward a minimum,
we may look for the speed of convergence. It is given by the following central
limit theorem (see e.g [? ]):

Theorem 2.2. Central Limit Theorem The assumptions are those of the
theorem(2.1), plus:

• g is C2 and S = d2g(x?) is definite positive, with smallest eigenvalue
λ1.

• Denoting εk+1 = dG(Xk, ξk+1) − dg(Xk), we assume that it exists a
limiting variance for εk:

lim
k→∞

E(εkε
t
k|Fk) = V,

where V is definite positive. Here Fk is the σ-algebra of the past, gen-
erated by (X0, (ξl)1≤l≤k).

• for some δ > 0, supk ‖εk‖2+δ <∞.

Then on the event Xk converges toward x∗,
√
γk(Xk − x∗) weakly converges

toward a N (0,Σ), a normal distribution with mean 0 and variance Σ. The
matrix Σ is the solution of the following equation:

if γk ∼ α
k+β

with 2α > 1
λ1

,

(S − 1

2α
I)Σ + Σ(S − 1

2α
I)t = V, (2)
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if γk = o( 1
k
)

SΣ + ΣSt = V. (3)

2.3. The Average Competitive Learning Vector Quantization

The CLVQ only changes one quantizer at each iteration, and thus needs a
large number of simulations to achieve good results. Our proposal is a mod-
ification of the competitive phase of the CLVQ method. This new procedure
introduce a sort of small Lloyd in this phase. The ACLVQ generates a set of
N random vectors ξ instead of one as the CLVQ method do. Our proposal
requires less time to achieve quantization errors of the same order despite it
use the same number of simulations needed by the CLVQ. The underlying
idea could be described as follows

ACLVQ scheme.

1. Generate the initial n-quantizers x1
0, · · · , xn0 .

2. Assign xi = xi0 for all i.

3. Generate a set of i.i.d. random vectors ξ = (ξ1, · · · , ξN) (with the same
distribution P).

4. Calculate the distance matrix between the n-quantizer and the random
vectors (competitive phase).

5. Identify the “Voronöı region” for each xi in the step k using ξ, i.e.:

I ik = {j : ‖ξj−xik‖ < ‖ξj−xmk ‖, ∀m 6= i}, i = 1, · · · , n, j = 1, · · · , N.

6. Calculate the mass centroid of the “Voronöı region” associated to each
I ik

ξ̃i =

∑
i∈Iik

ξi

N i
k

1Iik 6=∅,

with N i
k = |I ik|, where |A| denotes the cardinal of the set A.

7. Update the quantizers (learning phase) xik+1 = xik − γk+1(xki − ξ̃i), I ik 6= ∅

xik+1 = xik, I ik = ∅

where γk > 0 is the gain sequence as usual.

8. Repeat steps 2-7 until reach some convergence criteria.
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It is worth pointing out that this new method is not a stochastic gradient
method with decreasing step as the CLVQ, even if it is very close to. The
convergence theorem stated for this kind of algorithms can not be used di-
rectly. For that reason we need to write our proposal in the Kushner-Clark
settings to obtain the asymptotic behavior of the ACLVQ solution.

The Kushner-Clark theorem has been used to describe the behavior of
stochastic algorithms. It is also called method of ordinary differential equa-
tion and was introduced in ? ]. The most important results on a.s. con-
vergence of stochastic algorithms is due to the mentioned theorem. The
main idea comes from the link between the behavior of the solution of the
ODE (ẋ = −h(x)) and the convergence of each sample path of the stochastic
algorithm.

Let us consider the general recursive algorithm:
X0 ∈ Rd,

Xk+1 = Xk − γk+1f(Xk, ξk+1),
(4)

where k ∈ N, (ξk)k≥1, (Xk)k≥0 are two sequences on Rd, γk is the gain of the
method (i.e. γk ↘ 0) and H some general function, defined as f(Xk, ξk+1) =
H(Xk, ξk+1)− ηk+1 where ηk is a noisy term such as ηk → 0 when k → +∞.

Let us define the mean function h as h(Xk) = E(H(Xk, ξk+1)). In the
Kushner-Clark approach the convergence of (Xk)k≥1 is “conditional a.s.”
and related to the average ODE, which describes the mean behavior of the
stochastic algorithm. For instance the limiting points x∗ of the algorithm in
(4) lies in {h = 0}.

Let us define X = (X i)1≤i≤n, where X i ∈ Rd for all i = 1, · · · , n and γk
is the gain sequence as before. The general model under the Kushner-Clark
settings can be written as:

X i
k+1 = X i

k − γk+1Hi(Xk,ωk+1), (5)

where Hi(Xk,ωk+1) is a function from Rd×RNd to R, (ωk)k≥1, is a sequence

of random vectors in RNd: ωk = (ω1
k, · · · , ωNk ), with ωjk

i.i.d∼ P for all k and

j = 1, · · · , N , N ∈ N. Therefore ωk ∼ PN =
⊗N

j=1 P and obviously Xk is of
the same kind as X.

The theorem which assures the convergence a.s of the ACLVQ to an
optimal or stationary quantizer reads as follows
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Theorem 2.3. ACLVQ convergence. If the sequence Xk = (X1
k , · · · , Xn

k )
defined by the stochastic algorithm given in equation (5) lives in a compact
subset of O, then it converges P-a.s to a limiting point x? = (x?,1, · · · , x?,n)
(a stationary quantizer) of the function h = (h1, · · · , hn), where hi(X) =
E [Hi(Xk,ωk+1)|Xk = X].

The proof of previous theorem is left to the next section.

3. ACLVQ convergence

We use the Kushner-Clark theorem to prove the asymptotic convergence
of the solution of (5) toward one “optimal” or stationary quantizer of the
distribution.

3.1. Preliminaries

Let us rewrite the general equation (4)
X0 ∈ Rd,

Xk+1 = Xk − γk+1H(Xk, ξk+1) + γk+1ηk+1.

Defining ∆Mk+1 = h(Xk) − H(Xk, ξk+1) the previous formulation reads as
follows 

X0 ∈ Rd,

Xk+1 = Xk − γk+1h(Xk) + γk+1(∆Mk+1 + ηk+1).
(6)

We state the following assumption

(R) ≡


(i.)

+∞∑
s=1

γs∆Ms < +∞

(ii.) lim
s→∞

ηs = 0

.

Theorem 3.1. Kushner-Clark. If x∗ is an equilibrium point of the ODE
ẋ = −h(x), h a continuous function, the sequence (Xk)k≥1 in (4) is bounded
and the assumption R holds, then

Xk → x∗, as k → +∞,

on the event Ax
∗
K

4
= {Xk ∈ K ⊂ Gx∗ infinitely often}, where K is a compact

set.
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The Kushner-Clark theorem needs the boundedness of the solutions (Xk)k≥1

and the continuity of h. In some cases the choice of h leads to the bounded-
ness of the solution. The continuity requirement for h could be relaxed using
Lyapunov functional (see for instance ? ]).

3.2. Proof of the Theorem 2.3

Let us begin with the following lemma. We will denote pi(x) = P(Ci(x)
and qi(x) = (1− (1− P(Ci(x)))N).

Lemma 3.1. The function h = (h1, · · · , hn) (h(x) is defined for x =
(x1, · · · , xn), xi ∈ Rd for all i = 1, · · · , n) is P-a.s. continuous and its zeros
are exactly stationary quantizers for the distribution P, since h writes:

hi(x) =
qi(x)

pi(x)
dgi(x). (7)

here dgi is the derivatives of g with respect to xi.

Proof. Firstly we prove the second statement of the lemma. We have that

Hi(Xk,ωk+1) =


X i
k −

∑N
j=1 1Ci(Xk)(ω

j
k+1)ωj

k+1

N i
k+1

if N i
k+1 > 0

X i
k if N i

k+1 = 0,

where N i
k+1 =

∑N
j=1 1Ci(Xk)(ω

j
k+1), N i

k+1 is the number of times that a ran-

dom vector lies in the Voronöı region of X i
k. Furthermore

P(N i
k+1 = 0) = P(ωjk+1 /∈ Ci(Xk)), ∀j = 1, 2, · · · , N

= (1− P(Ci(Xk)))
N ,

thus P(N i
k+1 > 0) = 1− (1− P(Ci(Xk)))

N .
We use ω instead ωk in order to simplify the notations.

hi(Xk) = X i
kP(N i

k+1 > 0)−
∫

{N i
k+1>0}

1

N i
k+1

N∑
j=1

1Ci(Xk)(ω
j
k+1)ωjk+1PN(dω).

Denoting

Ωr = {ω1
k+1 ∈ Ci(Xk), · · · , ωrk+1 ∈ Ci(Xk), ω

r+1
k+1 /∈ Ci(Xk) · · · , ωNk+1 /∈ Ci(Xk)},
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and knowing that ωjk
i.i.d∼ P it follows

hi(Xk) = X i
kP(N i

k+1 > 0)−
N∑
r=1

1

r

(
N

r

) r∑
j=1

∫
Ωr

1Ci(Xk)(ω
j
k+1)ωjk+1PN(dω)

=

[
X i
k −

E1Ci(Xk)(ω
1)ω1

P(Ci(Xk))

]
P(N i

k+1 > 0).

Set

Ui(Xk) =
E1Ci(Xk)(ω)ω

P(Ci(Xk))
= E [X|X ∈ Ci(Xk)] , ∀i = 1, 2, · · · , n,

where ω ∼ P. We have

hi(Xk) = E [Hi(X,ωk+1)|X = Xk] = P(N i
k+1 > 0)(X i

k − Ui(Xk)).

This gives formula (7), and it is quite obvious that hi(Xk) = 0 if and only if
X i
k = Ui(Xk). Which means that the zeros of h = (h1, · · · , hn) are exactly

stationary quantizers.
The first assertion of the lemma is clear since P is supported by O (O ⊂

Rd is an open set in Rd): the functions
∫
Ci(Xk)

P(dω),
∫
Ci(Xk)

ωP(dω) are

continuous on O and the first one is positive on O.

�

Proof of Theorem 2.3. By Lemma 3.1 the proof is a direct consequence
of the Kushner-Clark theorem.

�

4. About the asymptotics of the CLVQ and ACLVQ

The Central Limit Theorem (theorem 2.2) straightforwardly applied to
CLV Q. For ACLV Q we need again a theorem a bit more general since it is
only close to a stochastic gradient algorithm. Nevertheless, the assumptions
and result are identical to that of theorem 2.2, replacing dg by h and d2g(x∗)
by the derivatives of h (see [? ]). The Hessian d2g has been computed by
Pollard and Fort-Pagès (see ([? ]),([? ]).
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By noticing that dg(x∗) = 0 we easily obtain dh(x∗) :

dh(x∗) = diag(
qi(x

∗)

pi(x∗)
)d2g(x∗).

Now in order to compare the asymptotics of the two algorithms, we need
a rescaling. Indeeed the ACLVQ use N times more samples at each iteration.
So we will compare CLVQ at step k with ACLVQ at step [k/N ], where [u]
is the entire part of u ∈ R. Of course the gains γ are to be rescaled too:
if the gain is γk at iteration k for CLVQ, it will be γkN at iteration k for
ACLVQ. Denoting for convenience the ACLVQ XN we thus obtain the fol-
lowing asymptotics.

For CLVQ :
√
γk(Xk − x∗) weakly converges toward a N (0,Σ).

For ACLVQ
√
γ[ k

N
]N(XN

[ k
N

]
− x∗) weakly converges toward a N (0,ΣN).

As γ[ k
N

]N ∼ γk, it remains to compare the two covariance matrices Σ and

ΣN . Let us denote V the asymptotic variance matrix of the noise for CLVQ
(notice that V is a diagonal matrix), and N i, 1 ≤ i ≤ N a multinomial ran-
dom variable with parameter (pi(x

∗)1≤i≤N). As x∗ is a stationary quantizer,
one can verify that the asymptotic variance of the noise for ACLVQ is:

VN = diag(E
1N i > 0

pi(x∗)N i
)V.

The equations (2) and (3) remain valid, but dh(x∗) is no more symetric.
Then, for instance in the case of equation (3), the matrix ΣN satisfies:

diag(
qi(x

∗)

pi(x∗)
)d2g(x∗)ΣN+ΣN [diag(

qi(x
∗)

pi(x∗)
)d2g(x∗)]t = diag(

1

pi(x∗)
E

1N i > 0

N i
)V.

Now we notice that E
1Ni>0

N i ≤ P(N i > 0) = qi(x
∗), and setting D =

diag( qi(x
∗)

pi(x∗)
) we obtain:

Dd2g(x∗)ΣN + ΣNd
2g(x∗)tD ≤ DV,

as semi definite matrices. Introducing D
1
2 , using equation (3) for Σ we deduce

that the matrix:

M = D
1
2 (d2g(x∗)ΣN − d2g(x∗)Σ)D−

1
2 + (D

1
2d2g(x∗)ΣN − d2g(x∗)ΣD−

1
2 )t,
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is semidefinite negative. From this we conclude that d2g(x∗)ΣN − d2g(x∗)Σ
has negative eigenvalues, which yields ΣN ≤ Σ as semi definite matrices.

We now conclude that ACLVQ with the same number of samples is
asymptotically more accurate than CLVQ.

This result as to be softened by the fact that when N is large, the asymp-
totic of ACLVQ is reached much longer after CLVQ. So choosing N too large
would cause ACLVQ to fail with respect to CLVQ.

5. Numerical results

In this section, numerical comparisons between the classical CLVQ and
our proposal are carried out in order to investigate the accuracy and compu-
tation time of each method. Our main interest is to illustrate the advantage
of the ACLVQ regarding the computation time.

We carry out numerical experiments with distributions in dimension one
and two. In dimension one it is not practical using the ACLVQ because
determinist algorithms like the Newton one perform very well (see ? ]).
However, these runs let us to evaluate the performance of the ACLVQ and
the classical CLVQ for the standard Gaussian distribution. In dimension
2 we make the major portion of the numerical simulations. In this setting
we consider 4 different distributions. Only for the uniform distribution in
the unit cube for any dimension and particular sizes of the quantizer it is
known the exact value of the distortion error. Therefore we consider these
distributions in both dimensions concerned. More precisely, for n = k2, in ?
] is proved that

e2
n(U([0, 1]d)) = n−2/d d

12
.

In Table 1 we show the choice of the parameters of the probability distribu-
tions concerned in the study in dimension two.

Distribution Parameters
N(0, I2)
N(0,Σ2) Σ2 = (σij)1≤i,j≤2 : σ11 = 7.1, σ22 = 1.7 and σij = 0 if i 6= j
U([0, 1]2)
Exp(Ψ2) Ψ2 = (µij)1≤i,j≤2 : µii = 1 and µij = 0 if i 6= j

Table 1: Probability distributions in dimension 2 used in the study.
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In the competitive phase we use five different values of N > 1, the number
of random vector generated in each iteration of the method. The value
N = 1 corresponds to the CLVQ. For each, distribution, n and N we run 100
repetitions.

To make a fair comparison between both methods we assure generate
similar number of random vectors for each case. More precisely, we compare
the runs of the CLVQ having total number of iteration K with those of
the ACLVQ of N simulations of the random vector by generation and total
number of generations K/N . Hence, both methods use the same ”total
information”: K copies of the random vector. We set the same initial vector
x0 for each n and all N . For the gain sequence

γk = γ0
a

a+ (γ0Nbk)c

we set a = 1, b = 0.1 and γ0 = 0.2. In Table 2 we present the parameter values
chosen in the study. All computations were made with MATLAB 7.11.0.584

R2010b in a computer with the following characteristics: CPU Pentium(R)

Dual Core T4500 2.30 GHz and 3Gb RAM.

n = 10 n = 50
N K10 c N K50 c
1 106 0.51 1 4× 106 0.51
10 105 0.45 50 8× 104 0.35
20 5× 104 0.45 100 4× 104 0.3
50 2× 104 0.45 250 1.6× 104 0.28
100 104 0.35 500 8× 103 0.15
200 5× 103 0.3 1000 4× 103 0.09

Table 2: Parameter values used in the simulation study in dimension 2.

5.1. Quantization error

First of all, we point out that the computation of the quantization error
in all the cases was made by Monte Carlo simulation using a dataset of 106

random vector copies.
In ? ] the authors reported quantization errors for the n-quantizer of the

standard Gaussian distribution for n = 2, 3, · · · , 8. Our algorithm reaches
results quite similar to those. The simulation study shows that our method
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exhibits a small standard deviation (of order of 10−4) over the 100 simulation
for each distribution and each value of N . Similar behavior was observed for
the one dimensional uniforme distribution on [0, 1]. These results support
our assumption that the ACLVQ has a good accuracy.

In Figure 1 and Figure 2 we display the boxplots of the quantization errors
after 100 repetitions of the experiment for each of values of N chosen and
n = 10 and n = 50 respectively. In Table 3 we shows the rest of the results
obtained. As can be observed the results obtained by the CLVQ (N = 1) and
by the ACLVQ are close. The standard deviation is small. Moreover, the
quantizers obtained for each case had the same spatial configuration (graphs
not shown).

N=1 N=50 N=200

0.3288

0.329

0.3292

0.3294

0.3296

0.3298

0.33

 

N=1 N=50 N=200

1.1044

1.1046

1.1048

1.105

1.1052

1.1054

1.1056

1.1058

1.106

 

Figure 1: Boxplots of quantization error for n = 10 obtained after 100 runs: N(0, I2) (left)
and N(0,Σ2) (right).

5.2. Computation time

Now, we turn our attention to the computation time. The major ad-
vantage of our proposal is the reduction of the computation time to obtain
optimal quantizers.

The results regarding the computation time can be seen in Table 4. As
we can see the ACLVQ reduces considerably the computation time when
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N=1 N=250 N=1000

0.075

0.0752

0.0754

0.0756

0.0758

0.076

 

N=1 N=250 N=1000

0.2575

0.258

0.2585

0.259

0.2595

0.26

0.2605

0.261

 

Figure 2: Boxplots of quantization error for n = 50 obtained after 100 runs: N(0, I2) (left)
and N(0,Σ2) (right).

P n N e2
n,N sn,N

10 1 0.0170 0.3523×10−4

50 0.0170 0.3505×10−4

U([0, 1]2) 200 0.0170 0.3682×10−4

50 1 0.0033 0.1471×10−4

250 0.0033 0.0953×10−4

1000 0.0033 0.0938×10−4

10 1 0.2492 0.1134×10−2

50 0.2494 0.1706×10−2

Exp(Ψ2) 200 0.2494 0.1577×10−2

50 1 0.0531 0.3213×10−3

250 0.0517 0.2856×10−3

1000 0.0517 0.2117×10−3

Table 3: Mean and standard deviation of the quantization after 100 runs.

N takes large values. For instance, the ACLVQ for n = 10 and N = 200
achieves the optimal quantizer 30 times faster than the CLVQ.

One could think that increasing N is all what one need to do in order to
improve the performance of algorithm. However, in experiments we do not
show here it was observed a decline of the accuracy of the algorithm. This
is mainly due to the fact that the ACLVQ can be trapped more easily in
local minima. Similar behavior is observed in the Lloyd’s method I when the
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n = 10 n = 50

N D1 D2 D3 D4 N D1 D2 D3 D4

1 66,80 66,62 74,65 138,63 1 286,57 286,70 321,36 579,50
10 32,79 32,74 32,91 39,62 50 115,41 114,72 112,98 120,56
20 16,61 16,58 16,65 20,15 100 61,29 60,92 59,82 64,65
50 6,87 6,85 6,84 8,36 250 30,30 30,17 29,60 31,85
100 3,73 3,72 3,71 4,54 500 20,92 20,87 20,45 22,05
200 2,19 2,19 2,17 2,64 1000 17,00 16,92 16,67 17,75

Table 4: Mean of computation times (in seconds).

initial set is far from the global minimum [? ]. Actually, the choice of N is
a tradeoff between accuracy and time consuming.

The gain in time is due to two factors: the first one and the most im-
portant is related with the number of computations that take place on the
learning phase: the ACLVQ is able to update more quantizers at each it-
eration than the CLVQ and, at the same time, in the overall process the
ACLVQ update less times. The number of iterations needed by the ACLVQ
is smaller. This fact relies on the Lloyd modification of the ACLVQ. The
computation time needed for this modification is negligible for the whole
process. It is important to emphasize that the number of random vector
simulations generation for both algorithms is similar. The second aspect
concerns the procedure used for the computation of the distance matrix in
the competitive phase (see Appendix A) which exploits very efficiently the
concept of vectorizing algorithms of MATLAB.

6. Some considerations in conclusion

The Average Competitive Learning Vector Quantization attains quite
similar results to those obtained by the CLVQ in the searching of the op-
timal quantizers in Rd regarding the distortion error. The generation of set
of random vectors in the competitive phase instead of one allows to the algo-
rithm updating more than one quantizer at each iteration. This improvement
leads to an important dismiss of consuming of computation time.

Our proposal gains in interest into problems in where the time consump-
tion is a crucial constraint. Another important advantage of the ACLVQ is
that the competitive phase is parallelizable what is not possible in the CLVQ
because the strong recursive nature of this algorithm.
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There are natural few ways to improve our algorithm. In a forthcom-
ing paper we study some of them. They concern, principally, an adaptive
scheme to select the number of simulations N at each competitive phase of
the ACLVQ. We focus in the choice of N as a tradeoff between accuracy and
computation time.

Appendix A. Euclidean distance matrix: a MATLAB procedure

We present a method to compute the Euclidean distance matrix of two
sets of vectors in dimension greater than 2. This method is based in product
of matrices and componentwise matrix multiplication which permits speed
up computing in MATLAB.

Let us define Q = (Qi, j)1≤i≤d, 1≤j≤n the matrix of quantizers and ξ =
(ξi, k)1≤i≤d, 1≤k≤N the matrix of random vector with N ∈ N.

To calculate the norm of n ·N vectors: Dj,k := ‖Q·, j − ξ·, k‖ for all j and
all k, we propose to decompose

D2
j,k =‖Q·, j − ξ·, k‖2 = ‖Q·, j‖2 + ‖ξ·, k‖2 − 2〈Q·, j, ξ·, k〉

=〈Q·, j, Q·, j〉+ 〈ξ·, k, ξ·, k〉 − 2〈Q·, j, ξ·, k〉.

The vectors

Q? =

(
d∑
i=1

Q2
i,1; · · · ;

d∑
i=1

Q2
i,n,

)
1×n

, ξ? =

(
d∑
i=1

ξ2
i,1; · · · ;

d∑
i=1

ξ2
i,N

)
1×N

are easily computed using elementwise self-multiplication of matrix Q and ξ
respectively, and summing by rows. Set D =

(
D2
j,k

)
j,k

it follows

D = tQ? (1, · · · , 1)1×N + t(1, · · · , 1)n×1 ξ
?.− 2 tQξ.

The code is available at http://profesores.matcom.uh.cu/~salomon.
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