Maximum Maximum of Martingales given Marginals - Archive ouverte HAL
Rapport Année : 2013

Maximum Maximum of Martingales given Marginals

Jan Obloj
  • Fonction : Auteur
  • PersonId : 938967
Peter Spoida
  • Fonction : Auteur
  • PersonId : 938968

Résumé

We consider the problem of superhedging under volatility uncertainty for an investor allowed to dynamically trade the underlying asset and statically trade European call options for all possible strikes and finitely-many maturities. We present a general duality result which converts this problem into a min-max calculus of variations problem where the Lagrange multipliers correspond to the static part of the hedge. Following Galichon, Henry-Labordére and Touzi \cite{ght}, we apply stochastic control methods to solve it explicitly for Lookback options with a non-decreasing payoff function. The first step of our solution recovers the extended optimal properties of the Azéma-Yor solution of the Skorokhod embedding problem obtained by Hobson and Klimmek \cite{hobson-klimmek} (under slightly different conditions). The two marginal case corresponds to the work of Brown, Hobson and Rogers \cite{brownhobsonrogers}. The robust superhedging cost is complemented by (simple) dynamic trading and leads to a class of semi-static trading strategies. The superhedging property then reduces to a functional inequality which we verify independently. The optimality follows from existence of a model which achieves equality which is obtained in Ob\lój and Spoida \cite{OblSp}.
Fichier principal
Vignette du fichier
host_7April2013.pdf (368.84 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00684005 , version 1 (30-03-2012)
hal-00684005 , version 2 (09-04-2013)

Identifiants

Citer

Pierre Henry-Labordere, Jan Obloj, Peter Spoida, Nizar Touzi. Maximum Maximum of Martingales given Marginals. 2013. ⟨hal-00684005v2⟩
679 Consultations
368 Téléchargements

Altmetric

Partager

More