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Abstract

We consider the problem of superhedging under volatility uncertainty for an investor

allowed to dynamically trade the underlying asset and statically trade European call

options for all possible strikes and finitely-many maturities. We present a general du-

ality result which converts this problem into a min-max calculus of variations problem

where the Lagrange multipliers correspond to the static part of the hedge. Following

Galichon, Henry-Labordère and Touzi [19], we apply stochastic control methods to

solve it explicitly for Lookback options with a non-decreasing payoff function. The

first step of our solution recovers the extended optimal properties of the Azéma-Yor

solution of the Skorokhod embedding problem obtained by Hobson and Klimmek [22]

(under slightly different conditions). The two marginal case corresponds to the work

of Brown, Hobson and Rogers [9].

The robust superhedging cost is complemented by (simple) dynamic trading and

leads to a class of semi-static trading strategies. The superhedging property then

reduces to a functional inequality which we verify independently. The optimality

follows from existence of a model which achieves equality which is obtained in Ob lój

and Spoida [33].
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1 Introduction

The classical framework underpinning much of the quantitative finance starts by postulat-

ing a probabilistic model for future prices of risky assets. The models, from their origins

in Samuelson [36], Merton [28] and Black and Scholes [6] to the present day, have seen a

remarkable evolution and ever increasing sophistication. Nevertheless, the essence remained

the same: no arbitrage ensures that under an equivalent probability measure (discounted)

asset prices are martingales and that the fair price of a future payoff is given by the cap-

ital needed to replicate that payoff. That capital is then computed as the (risk-neutral)

expectation of the payoff.

The classical framework has been very influential both in terms of its impact on academic

research as well as on the financial industry. However, as every modelling framework, it has

its important limitations. The fundamental criticism is related to the distinction between

risk and uncertainty dating back to Knight [25]. The classical approach starts by postulating

a stochastic universe (Ω,F,P) which is meant to model a financial environment and capture

its riskiness. What it fails to capture however is the uncertainty in the choice of P, i.e. the

possibility that the model itself is wrong, also called the Knightian uncertainty. To account

for model uncertainty it is natural to consider simultaneously a whole family {Pα : α ∈ A}

of probability measures. When all Pα are absolutely continuous w.r.t. one reference measure

P we speak of drift uncertainty or dominated setting. This has important implications for

portfolio choice problems, see Föllmer, Schied and Weber [18], but is not different from

an incomplete market setup in terms of option pricing. However the non-dominated setup

when Pα may be mutually singular posed new challenges and was investigated starting with

Avellaneda et al. [1] and Lyons [26], through Denis and Martini [16] to several recent works

e.g. Peng [34], Soner, Touzi and Zhang [37], see also [19] and the references therein.

Naturally as one relaxes the classical setup one has to abandon its precision: under model

uncertainty we do not try to have a unique price but rather to obtain an interval of no-

arbitrage prices. Its bounds are given by seller’s and buyer’s “safe” prices, the superreplica-

tion and the subreplication prices, which can be enforced by trading strategies which work

in all considered models. These bounds can be made more efficient by enlarging the set of

hedging instruments. Indeed, in the financial markets certain derivatives on the underlying

we try to model are liquid and have well defined market prices. Without one fixed model,

these options can be included in traded asset without creating an arbitrage opportunity. By

allowing to trade dynamically in the underlying and statically (today) in a range of options

one hopes to have a more efficient approach with smaller intervals of possible no-arbitrage

prices. This constitutes the basis of the so-called robust approach to pricing and hedging.

We contribute to this literature. Our objective here is to derive in an explicit form the

superhedging cost of a Lookback option given that the underlying asset is available for
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frictionless continuous-time trading, and that European options for all strikes are available

for trading for a finite set of maturities. In a zero interest rate financial market, it essentially

follows from the no-arbitrage condition, as observed by Breeden and Litzenberger [8], that

these trading possibilities restrict the underlying asset price process to be a martingale with

given marginals. Since a martingale can be written as a time changed Brownian motion, and

the maximum of the processes is not altered by a time change, the one-marginal constraint

version of this problem can be converted into the framework of the Skorokhod embedding

problem (SEP). This observation is the starting point of the seminal paper by Hobson [20]

who exploited the already known optimality result of the Azéma-Yor solution to the SEP

and, more importantly, provided an explicit static superhedging strategy. This methodology

was subsequently used to derive robust prices and super/sub-hedging strategies for barrier

options in Brown, Hobson and Rogers [10], for options on local time in Cox, Hobson and

Ob lój [12], for double barrier options in Cox and Ob lój [13, 14] and for options on variance

in Cox and Wang [15], see Ob lój [32] and Hobson [21] for more details.

The above works focused on finding explicitly robust prices and hedges for an option

maturing at T given market prices of call/put options co-maturing at T . For lookback

options, an extension to the case where prices at a further intermediate maturity are given

can be deduced from Brown, Hobson and Rogers [9]. More recently, Hobson and Neuberger

[23] treated forward starting straddle also using option prices at two maturities. Otherwise,

and excluding the trivial cases when intermediate laws have no constraining effect (see e.g.

the iterated Azéma-Yor setting in Madan and Yor [27]), we are not aware of any explicit

robust pricing/hedging results when prices of call options for several maturities are given.

The most likely reason for this is that the SEP-based methodology pioneered in Hobson

[20] starts with a good guess for the superhedge/embedding and these become much more

difficult when more marginals are involved.

Our approach is to exploit a duality transformation which converts our problem into a

martingale transportation problem: maximize the expected coupling defined by the payoff

so as to transport the Dirac measure along the given distributions µ1, . . . , µn by means of

a continuous-time process restricted to be a martingale. This approach was simultaneously

suggested by [4] in the discrete-time case, and [19] in continuous-time. We refer to Bonnans

and Tan [7] for a numerical approximation in the context of variance options, and Tan

and Touzi [39] for a general version of the optimal transportation problem under controlled

dynamics.

Our general duality result converts the original problem into a min-max calculus of varia-

tions problem where the Lagrange multipliers encode the intermediate marginal constraints.

An important financial interpretation is that the multiplier represent the optimal static po-

sition in Vanilla options so as to reduce the risk induced by the derivative security. Following

Galichon, Henry-Labordère and Touzi [19], we apply stochastic control methods to solve the
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new problem explicitly. The first step of our solution recovers the extended optimal prop-

erties of the Azéma-Yor solution of the Skorokhod embedding problem obtained by Hobson

and Klimmek [22] (under slightly different conditions). The two marginal case corresponds

to the work of Brown, Hobson and Rogers [9]. However the stochastic control only allows us

to prove an upper bound on the superreplication price. To show that the bound is optimal

we need to construct a model which fits the given marginals and attains the bound. To do

this we revert to the SEP methodology.

Equipped with a candidate for the static position in the optimal hedge we are able to guess

the corresponding dynamic counterpart and obtain a class of semi-static trading strategies.

The superhedging property then reduces to a functional inequality which we verify indepen-

dently. The optimality then follows from existence of a model which achieves equality and

which is derived from SEP results obtained in Ob lój and Spoida [33].

The paper is organized as follows. Section 2, provides the precise mathematical formulation

of the problem and states the main pricing/hedging duality result for arbitrary measurable

claims under n-marginal constraints. It also discusses the link with martingale optimal

transport. Our main result is given in Section 3. Pathwise arguments, including the su-

perreplicating strategy, provide a first self-contained proof of the main theorem and are

reported in Section 4. The stochastic control approach which allowed us to guess the correct

quantities for the pathwise arguments, is reported in Section 5. Additional arguments for

the one marginal case are given in Section 6. A proof of one technical lemma is relegated to

the Appendix.

2 Robust superhedging of Lookback options

2.1 Modeling the volatility uncertainty

The probabilistic setting is the same as in [19] and we introduce it briefly. Further, we limit

ourselves to a one-dimensional setting which is mostly relevant here.

Let Ωx := {ω ∈ C([0, T ],R1) : ω0 = x} and write Ω := Ω0. Consider Ω as the canonical

space equipped with the uniform norm ‖ω‖∞ := sup0≤t≤T |ωt|, B the canonical process, P0

the Wiener measure, F := {Ft}0≤t≤T the filtration generated by B. Throughout the paper,

X0 is some given initial value in R, and we denote

Xt := X0 +Bt for t ∈ [0, T ].

For all F−progressively measurable processes σ with values in R
+ and satisfying

∫ T

0
σ2
sds <

∞, P0−a.s., we define the probability measures on (Ω,F):

P
σ := P0 ◦ (Xσ)−1 where Xσ

t := X0 +

∫ t

0

σrdBr, t ∈ [0, T ], P0 − a.s.
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so that X is a P
σ−local martingale. PS denotes the collection of all such probability measures

on (Ω,F). The quadratic variation process 〈X〉 = 〈B〉 is universally defined and takes

values in the set of all non-decreasing continuous functions with 〈B〉0 = 0. Moreover, for

any P
σ ∈ PS, 〈B〉t is absolutely continuous with respect to the Lebesgue measure.

In this section, we shall consider a convenient subset P ⊂ PS, satisfying some technical

conditions. For all P ∈ P, we think of (Ω,FT ,F,P) as a possible model for our financial

market, where (Xt) denotes the forward price of the underlying, i.e. we use the discounted

units and the money market account is just constant.

The coordinate process stands for the price process of an underlying security and we focus

on the situation when prices of liquidly traded options allow to back out the (risk-neutral)

distribution of the underlying security, as observed by Breeden and Litzenberger [8]. To

this end we shall focus on the probability measures in P ∈ P which satisfy the following

requirement1

{Xt : t ≤ T} is a P− uniformly integrable martingale. (2.1)

For all P ∈ P, we denote by H
0(P) the collection of all (P,F)−progressively measurable

processes, and

H
2
loc(P) :=

{

H ∈ H
0(P) :

∫ T

0
|Ht|

2d〈B〉t <∞, P− a.s.
}

.

Finally, throughout the paper, all functions are implicitly taken to be Borel measurable.

2.2 Robust super-hedging by trading the underlying

We consider the robust superhedging problem of some derivative security defined by the

payoff ξ : ΩX0 −→ R at some given maturity T > 0. We assume that ξ is FT−measurable.

Under the self-financing condition, for any portfolio process H , the portfolio value process

Y H
t := Y0 +

∫ t

0

Hs · dBs, t ∈ [0, T ], (2.2)

is well-defined P−a.s., whenever H ∈ H
2
loc(P), for every P ∈ P. This stochastic integral

should be rather denoted Y H
t

P
to emphasize its dependence on P, see however Nutz [29].

Let ξ be an FT−measurable random variable. We introduce the subset of martingale

measures:

P(ξ) := {P ∈ P : EP[ξ−] <∞}.

1We thus rule out cases when the coordinate process is a strict local martingale, which may be of interest

in modelling financial bubbles, see e.g. Cox and Hobson [11], Jarrow, Protter and Shimbo [24].

5



The reason for restricting to this class of models is that, under the condition that E
P[ξ+] <

∞, the hedging cost of ξ under P is expected to be −∞ whenever E
P[ξ−] = ∞. As usual, in

order to avoid doubling strategies, we introduce the set of admissible portfolios:

H(ξ) :=
{

H : H ∈ H
2
loc and Y H is a P− supermartingale for all P ∈ P(ξ)

}

.

The robust superhedging problem is defined by:

U0(ξ) := inf
{

Y0 : ∃ H ∈ H(ξ), Y H
1 ≥ ξ, P− a.s. for all P ∈ P(ξ)

}

. (2.3)

Theorem 2.1 in [19] gives a dual representation of U0(ξ) for an arbitrary payoff ξ satisfy-

ing some uniform continuity assumptions. More recently, Neufeld and Nutz [30] relaxed

the uniform continuity condition, allowing for a larger class of random variables including

measurable ones. The following extension of [30], reported in [35], is better suited to our

context:

Theorem 2.1 Assume sup
P∈P E

P[ξ+] < ∞. Then U0(ξ) = sup
P∈P E

P[ξ]. Moreover, exis-

tence holds for the robust superhedging problem U0(ξ), whenever U0(ξ) <∞.

2.3 Robust superhedging with additional trading of Vanillas

Let n be some positive integer, 0 = t0 < . . . < tn = T be some partition of the interval [0, T ].

In addition to the continuous-time trading of the primitive securities, we assume that the

investor can take static positions in European call or put options with all possible strikes

and maturities t1 < · · · < tn. The market price of the European call option with strike

K ∈ R and maturity ti is denoted

ci(K), i = 1, . . . , n, and we denote c0(K) := (X0 −K)+.

Consider a model P ∈ P which is calibrated to the market, i.e. EP[(Xti −K)+] = ci(K) for

all 1 ≤ i ≤ n and K ∈ R. Differentiating in K, as observed by Breeden and Litzenberger

[8], we see that

P(Xti > K) = −c′i(K+) =: µi((K,∞))

is uniquely specified by the market prices and is independent of P. Let µ = (µ1, . . . , µn) and

P(µ) :=
{

P ∈ P : Xti ∼ µi, 1 ≤ i ≤ n
}

be the set of calibrated market models. As X is a P-martingale, the necessary and sufficient

condition for P(µ) 6= ∅ is that the µi’s are nondecreasing in convex order or, equivalently,

∫

|x|dµi(x) <∞,

∫

xdµi(x) = X0, and ci−1 ≤ ci for all 1 ≤ i ≤ n, (2.4)
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where now ci(K) =
∫∞

K
(x −K)dµi(x). This is a direct extension of the Strassen Theorem

[38]. The necessity follows from Jensen’s inequality. For sufficiency, an explicit model can be

constructed using techniques of Skorokhod embeddings, see Ob lój [31]. In consequence, the

tj−maturity European derivative defined by the payoff λi(Xti) has an un-ambiguous market

price

µi(λi) :=

∫

λidµi = E
P[λ(Xti)], for all P ∈ P(µ).

The condition P(µ) 6= ∅ embodies the fact that the market prices observed today do not

admit arbitrage. By this we mean that there exists a classical model in mathematical

finance which admits no arbitrage (no free lunch with vanishing risk) and reprices the call

options through risk neutral expectation. For that reason we sometimes refer to (2.4) as the

no-arbitrage condition.

Remark 2.1 For the purpose of the present financial application, we could restrict the

measures µi to have support in R+ and P ∈ P to be such that Xt ≥ 0 P-a.s. Note however

that this is easily achieved: it suffices to assume that X0 > 0 and cn(K) = X0 − K for

K ≤ 0. Then µn((K,∞)) = 1, K < 0, and hence µn([0,∞)) = 1. Then for any P ∈ P(µ) we

have Xt = E
P[XT |Ft] ≥ 0 P−a.s. for t ∈ [0, T ]. In particular, µi([0,∞)) = P(Xti ≥ 0) = 1.

As it will be made clear in our subsequent Proposition 2.1, the function λi will play the role

of a Lagrange multiplier for the constraint Xti ∼ µi, i = 1, . . . , n.

We denote t := (t1, . . . , tn), λ = (λ1, . . . , λn),

µ(λ) :=
n
∑

i=1

µi(λi), λ(xt) :=
n
∑

i=1

λi(xti), and ξλ(x, t) := ξ(x) − λ(xt) (2.5)

for x ∈ C([0, T ]). The set of Vanilla payoffs which may be used by the hedger are naturally

taken in the set

Λµ
n(ξ) :=

{

λ ∈ Λµ
n : sup

P∈P
E
P
[(

ξλ
)+]

<∞
}

, where Λµ
n :=

{

λ : λi ∈ L
1(µi), 1 ≤ i ≤ n

}

.

(2.6)

The superreplication upper bound is defined by:

Uµ
n (ξ) := inf

{

Y0 : ∃ λ ∈ Λµ
n(ξ) and H ∈ H(ξλ), Y

H,λ

T ≥ ξ,P− a.s. for all P ∈ P(ξλ)
}

,

(2.7)

where Y
H,λ

denotes the portfolio value of a self-financing strategy with continuous trading

H in the primitive securities, and static trading λi in the ti−maturity European calls with

all strikes:

Y
H,λ

T := Y H
T − µ(λ) + λ(Xt), (2.8)
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indicating that the investor has the possibility of buying at time 0 any derivative security

with payoff λi(Xti) for the price µi(λi). U
µ
n (ξ) is an upper bound on the price of ξ necessary

for absence of strong (model-independent) arbitrage opportunities: selling ξ at a higher

price, the hedger could set up a portfolio with a negative initial cost and a non-negative

payoff under any market scenario.

Similar to [19], the next result is a direct consequence of the robust superhedging dual

formulation of Theorem 2.1.

Proposition 2.1 Assume that sup
P∈P E[ξ+] <∞, and let the family of probability measures

µi, i = 1, . . . , n be as in (2.4). Then:

Uµ
n (ξ) = inf

λ∈Λµ
n(ξ)

sup
P∈P

{

µ(λ) + E
P
[

ξ − λ(Xt)
]}

.

Our objective in the subsequent sections is to use the last dual formulation in order to

obtain a closed form expression for the above upper bound in the following special cases:

• Lookback option ξ := g(XT , X
∗
T ), with X∗

T := maxt≤T Xt, under one-marginal con-

straint n = 1, and some “monotonicity” condition of m 7−→ g(x,m);

• Lookback option ξ := φ(X∗
T ), for some nondecreasing function φ, under multiple

marginal constraints.

The one-marginal result is reported in Section 6, and has been recently established by

Hobson and Klimmek [22] under slightly different assumptions; therefore it must be viewed

as an alternative approach to that of [22]. In contrast, the multiple-marginal result of

Sections 4 and 5 is new to the literature, and generalizes the earlier contribution of Brown,

Hobson and Rogers [9] in the two-marginal case. It also encompasses the trivial case where

one can simply iterate the one-dimensional Azéma-Yor [2] construction, see also Madan and

Yor [27].

2.4 Optimal transportation and Skorokhod embedding problem

In this short section we discuss the connection of our problem to optimal transportation

theory, on one the hand, and to the Skorokhod embedding problem, on the other hand.

First, by formally inverting the inf-sup in the dual formulation of Proposition 2.1, we see

that Uµ
n (ξ) is related to the optimization problem:

sup
P∈P(µ)

E
P[ξ] (2.9)

which falls in the recently introduced class of optimal transportation problems under con-

trolled stochastic dynamics, see [4, 19, 39]. In words, the above problem consists in maximiz-

ing the expected transportation cost of the Dirac measure δ{X0} along the given marginals
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µ1, . . . , µn with transportation scheme constrained to a specific subclass of martingales. The

cost of transportation in our context is defined by the path-dependent payoff ξ(x).

The validity of the equality between the value function in (2.9) and our problem Uµ
n (ξ)

was established recently by Dolinsky and Soner [17] for Lipschitz payoff function ω 7−→ ξ(ω)

and n = 1. The corresponding duality result in the discrete time framework was obtained

in [4].

Note that if we can find a trading strategy Y
H,λ

T as in (2.8) which superreplicates ξ:

Y
H,λ

T ≥ ξ P-a.s. for all P ∈ P(ξλ) and a P
max ∈ P(µ) ∩ P(ξλ) such that E

P
max

[ξ] = Y0 then

trivially

Y0 ≤ sup
P∈P(µ)

E
P[ξ] ≤ Uµ

n (ξ) ≤ Y0

and it follows that we have equalities throughout. This line of attack has been at the

heart of the approach to robust pricing and hedging based on the Skorokhod embedding

problem, as in [20, 10, 13, 14, 15]. It relies crucially on the ability to make a correct guess

for the cheapest superhedge Y
H,λ

T . This becomes increasingly difficult when one considers

information about prices at several maturities, n > 1. In this paper, we follow the above

methodology in Section 4 to provide a first proof of our main result, Theorem 3.1. Sections

5–6 then provide a second proof based on stochastic control methods. The latter is longer

and more involved than the former however it was in fact necessary in order to guess the

right quantities for the former.

We now specialize the discussion to the case of a Lookback option ξ = G(Xt, X
∗
T ), for some

payoff function G. By the Dambis-Dubins-Schwartz time change theorem, we may re-write

the problem (2.9) as a multiple stopping problem (see Proposition 3.1 in [19]):

sup
(τ1,...,τn)∈T (µ)

E
P0
[

G
(

Xτ1 , . . . , Xτn, X
∗
τn

)]

, (2.10)

where the T (µ) is the set of ordered stopping times τ1 ≤ . . . ≤ τn <∞ P0-a.s. with Xτi ∼P0 µi

for all i = 1, . . . , n and (Xt∧τn) being a uniformly integrable martingale. Elements of T (µ)

are solutions to the iterated (multi-marginal) version of the so-called Skorokhod embedding

problem (SEP), cf. [31]. Here, the formulation (2.10) is directly searching for a solution to

the SEP which maximizes the criterion defined by the coupling G(x,m). Previous works

have focused mainly on single marginal constraint (n = 1). The case G(x,m) = φ(m) for

some non-decreasing function φ is solved by the so-called Azéma-Yor embedding [2, 3, 20],

see also [19] which recovered this result by stochastic-control approach of Section 5. The

case G(x,m) was considered recently by Hobson and Klimmek [22], where the optimality of

the Azéma-Yor solution of the SEP is shown to be valid under convenient conditions on the

function G. This case is also solved in Section 6 of the present paper with our approach,

leading to the same results than [22] but under slightly different conditions.
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The case G(x1, . . . , xn, m) = φ(m) for some nonincreasing function φ is also trivially solved

by τAY (µn) in the special case when the single marginal solutions are naturally ordered:

τAY (µi) ≤ τAY (µi+1). This is called the increasing mean residual value property by Madan

and Yor [27] who established in particular strong Markov property of the resulting time-

changed process. The case of arbitrary measures which satisfy (2.4) for n = 2 was solved in

Brown, Hobson and Rogers [9]. In this paper we consider n ∈ N.

3 Main result

Consider the Lookback option defined by the payoff

ξ = φ(X∗
T ),

for some nondecreasing function φ.

The key ingredient for the solution of the present n−marginals Skorokhod embedding

problem turns out to be the following minimization problem:

C(m) := min
ζ1≤...≤ζn≤m

n
∑

i=1

(

ci(ζi)

m− ζi
−

ci(ζi+1)

m− ζi+1
1{i<n}

)

for all m ≥ X0, (3.1)

where we understand the value in (3.1) for ζk < ζk+1 = · · · = ζn = m as limit of the value

ζk+1 = · · · = ζn = ζ → m which is clearly either +∞ or is well defined in terms of the

derivative of the call function at m.

For a fixed m, the minimum above is attained by some −∞ < ζ∗1 ≤ · · · ≤ ζ∗n ≤ m. To

see this, we first observe that, by taking ζ1 = . . . = ζn it follows that (3.1) simplifies to

minζn≤m
cn(ζn)
m−ζn

which is the slope of the tangent to cn intersecting the x-axis in m and is

strictly smaller than 1. Then C(m) < 1. On the other hand, let (ζk1 , . . . , ζ
k
n) be a sequence

which attains minimum. Notice that c1(ζ1)
m−ζ1

→ 1 as ζ1 → −∞ and the remaining terms in the

sum in (3.1) are non-negative. Then, if we can extract a subsequence of (ζk1 )k converging to

−∞, we obtain by sending k → ∞ along such a subsequence that C(m) ≥ 1, a contradiction.

Hence ζk1 is bounded from below, implying that −∞ < infj ζ
j
1 ≤ ζk1 ≤ . . . ≤ ζkn ≤ m, thus

reducing (3.1) to a minimisation problem of a continuous function in a compact subset of

R
n.

Theorem 3.1 Let φ be a non-decreasing function and assume that the no-arbitrage condi-

tion (2.4) holds. Let ζ∗1 (m), . . . , ζ∗n(m) be a solution to (3.1) for a fixed m. Then,

Uµ
n (ξ) ≤ U := φ(X0) +

n
∑

i=1

∫ ∞

X0

( ci(ζ
∗
i (m))

m− ζ∗i (m)
−

ci(ζ
∗
i+1(m))

m− ζ∗i+1(m)
1{i<n}

)

φ′(m)dm. (3.2)
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Moreover, there exist λ ∈ Λµ
n, explicitly given in (4.4), and trading strategies H = Hstock +

H fwd ∈ H(ξλ), explicitly given in (4.5)-(4.6), such that U = φ(X0) + µ(λ) and

U + λ(Xt) − µ(λ) +

n
∑

i=1

Hti−1
(Xti −Xti−1

) ≥ φ(X∗
T ) for all ω ∈ ΩX0 . (3.3)

Assume further that µ1, . . . , µn satisfy Assumption A in [33]. Then, equality holds in (3.2).

As explained before, we shall provide two alternative proofs of this result. The first one,

reported in Section 4, consists in a short pathwise argument, based on a guess of the form

of the optimal superhedging strategy for a simple one-touch barrier option, combined with

the Skorokhod embedding results of [33].

The second proof, reported in Section 5, is more involved, and builds on the stochastic

control approach of [19] which develops a systematic way of solving superhedging problems

under marginals constraints. As in [19], the stochastic control tools provide the upper bound,

and the optimality of the bound follows from the Skorokhod embedding results of [33]. It is

our intention to demonstrate that the arguments we give in these sections prove the upper

bound in Theorem 3.1 and hence emphasis will be put on rigour.

A further reason for reporting the stochastic control proof in detail is that in fact it was a

starting point for both the pathwise arguments in Section 4 as well as for the construction

of the embedding in [33]. More precisely, it allowed us to identify the static part λ of the

optimal hedge. It was then possible to guess the dynamic part of the super-hedging strategy

following the intuition of two-marginal (n = 2) case in [9] to trade only at the intermediate

maturities and when the barrier is hit. The embedding construction was tailored as to

provide a model in which the optimal super-hedge is in fact a perfect hedge, see Section 4

for details.

Remark 3.1 It follows from [33, Section 4] that if their Assumption A fails then the bound

(3.1) is not necessarily optimal.

4 The pathwise approach

4.1 A trajectorial inequality

The following trajectorial inequality is the building block for robust superhedging of the

Lookback option in the n-marginal case.
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Proposition 4.1 Let ω be a càdlàg path and denote ω∗
t := sup0≤s≤t ωs. Then, for m > ω0

and ζ1 ≤ · · · ≤ ζn < m:

1{ω∗
tn

≥m} ≤
n
∑

i=1

(

(ωti − ζi)
+

m− ζi
+ 1{

ω∗
ti−1

<m≤ω∗
ti

}

m− ωti
m− ζi

)

−
n−1
∑

i=1

(

(ωti − ζi+1)
+

m− ζi+1

+ 1{m≤ω∗
ti
,ζi+1≤ωti}

ωti+1
− ωti

m− ζi+1

)

. (4.1)

Proof Denote by An the right hand-side of (4.1), and let us prove the claim by induction.

First, in the case n = 1, the required inequality is the same as that of [9, Lemma 2.1]:

A1 =
(ωt1 − ζ1)

+ + 1{ω∗
t0
<m≤ω∗

t1
}(m− ωt1)

m− ζ1
≥

ωt1 − ζ1 +m− ωt1
m− ζ1

1{m≤ω∗
t1
} ≥ 1{m≤ω∗

t1
}.

We next assume that An−1 ≥ 1{

ω∗
tn−1

≥m
} for some n ≥ 2, and show that An ≥ 1{ω∗

tn
≥m}.

We consider two cases.

Case 1: ω∗
tn−1

≥ m. Then ω∗
tn

≥ m, and it follows from the induction hypothesis that

1 = 1{ω∗
tn

≥m} = 1{

ω∗
tn−1

≥m
} ≤ An−1. In order to see that An−1 ≤ An, we compute directly

that, in the present case,

An − An−1 =
ωtn − ζn
m− ζn

(

1{ωtn≥ζn} − 1{ωtn−1≥ζn}

)

≥ 0. (4.2)

Case 2: ω∗
tn−1

< m. As (ω∗
t ) is non-decreasing, it follows that ω∗

ti
< m for all i ≤ n − 1.

With a direct computation we obtain:

An = A0
n+

(ωtn − ζn)+

m− ζn
+1{m≤ω∗

tn}
m− ωtn
m− ζn

, where A0
n :=

n−1
∑

i=1

(

(ωti − ζi)
+

m− ζi
−

(ωti − ζi+1)
+

m− ζi+1

)

.

Since m > ω∗
ti
≥ ωti for i ≤ n−1, the functions ζ 7−→ (ωti − ζ)+/(m− ζ) are non-increasing.

This implies that A0
n ≥ 0 by the fact that ζi ≤ ζi+1 for all i ≤ n. Then:

An ≥
(ωtn − ζn)+ + 1{m≤ω∗

tn}
(m− ωtn)

m− ζn
≥

(ωtn − ζn)+ +m− ωtn
m− ζn

1{m≤ω∗
tn}

(4.3)

≥
ωtn − ζn +m− ωtn

m− ζn
1{m≤ω∗

tn}
= 1{m≤ω∗

tn}
.

2

4.2 Financial interpretation

We develop now a financial interpretation of the right hand side of (4.1) as a (pathwise)

superhedging strategy for a simple knock-in digital barrier option with payoff ξ = 1{X∗
T
≥m}.
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It consists of three elements: a static position in call options, a forward transaction (with the

shortest available maturity) when the barrier m is hit and rebalancing thereafter at times

ti. More precisely:

(i) Static position in calls:

λζ(Xt) :=

n
∑

i=1

(

(Xti − ζi)
+

m− ζi
−

(Xti − ζi+1)
+

m− ζi+1

)

.

For 1 ≤ i < n, we hold a portfolio long and short calls with maturity ti and strikes ζi

and ζi+1 respectively. This yields a “tent like” payoff which becomes negative only if the

underlying exceeds level m. Note that by setting ζi = ζi+1 we may avoid trading the ti−

maturity calls. For maturity tn we are only long in a call with strike ζn.

(ii) Forward transaction if the barrier m is hit: 1{

X∗
ti−1

<m≤X∗
ti

}

m−Xti

m−ζi

At the moment when the barrier m is hit, say between maturities ti∗−1 and ti∗ , we enter into

forward contracts with maturity ti∗ .

Note that the long call position with maturity ti∗ together with the forward then superhedge

the knock-in digital barrier option, cf. (4.3). This resembles the robust semi-static hedge in

the one-marginal case, cf. [9, Lemma 2.4]. All the “tent like” payoffs up to maturity ti∗−1

are non-negative.

(iii) Rebalancing of portfolio to hedge calendar spreads: −
∑n−1

i=1 1{m≤X∗
ti
,ζi+1≤Xti}

Xti+1
−Xti

m−ζi+1

After the barrier m was hit, we start trading at times ti in such a way that a potential

negative payoff of the calendar spreads
(Xti+1

−ζi+1)+

m−ζi+1
−

(Xti
−ζi+1)+

m−ζi+1
, i∗ ≤ i ≤ n, is offset, cf.

(4.2).

In the above (ii) and (iii) are instances of dynamic trading which is done in a self-financing

way. Their combined payoff may be written as
∫ T

0
Hζ
sdXs for a suitable choice of (simple)

integrand Hζ . Note that here ξ ≥ 0 so P(ξ) = P and Hζ ∈ H(ξζ). Let Y0 = µ(λζ) =
∑n

i=1

(

c
i
(ζi)

m−ζi
− ci(ζi+1)

m−ζi+1
1{i<n}

)

, which is the initial cost entering into the static position in (i),

see (2.5). Then

Y ζ
T = Y0 +

∫ T

0

Hζ
sdXs + λζ(Xt) − µ(λζ)

is an example of a semi-static trading strategy as in (2.8) and the inequality (4.1) now

simply says that for any choice of ζ1 ≤ . . . ≤ ζn < m, our strategy Y ζ superreplicates ξ.

Our candidate superhedge for ξ is the cheapest among all Y ζ . Its cost is given by (3.1) and

corresponds to minimizers ζ∗1 (m), . . . , ζ∗n(m) of the optimization problem (3.1). To prove

that indeed Uµ
n (ξ) = µ(λζ∗) it suffices, as observed in Section 2.4, to find one P ∈ P(µ) such

that E
P[ξ] = µ(λζ∗). This is done below in Section 4.3 where, under Assumption A in [33]

and using the results therein, we actually exhibit P such that ξ = Y ζ∗

T P-a.s. Moreover, P is

independent of m.
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We finally extend the above hedging strategy to the context of a general Lookback payoff

φ(X∗
T ) for some nondecreasing φ. The superhedging property (3.3) is again obtained by

integrating both sides of inequality 1{X∗
T
≥m} ≤ Y

ζ∗(m)
T against φ′. The resulting optimal

hedging strategy is then characterised by:

λi(x) :=

∫ ∞

X0

(

(x− ζ∗i (m))+

m− ζ∗i (m)
−

(

x− ζ∗i+1(m)
)+

m− ζ∗i+1(m)
1{i<n}

)

φ′(m)dm (4.4)

Hstock
t (ω) := −

∫ ∞

X0

1{

ω∗
⌊t⌋

≥m,ω⌊t⌋≥ζ
∗
ind(t)

(m)
}

m− ζ∗ind(t)(m)
φ′(m)dm (4.5)

H fwd
t (ω) := −

∫ ∞

X0

1{

ω∗
⌊t⌋
<m,ω∗

t≥m
}

m− ζ∗ind(t)(m)
φ′(m)dm. (4.6)

with ⌊t⌋ := max {ti : ti < t, i < n}, ind(t) := min {i ≤ n : ti > t}.

The above integrals are well defined2 and from (4.4), (4.5) and (4.6) it is more transparent

what kind of integrability conditions one has to impose on φ in order to ensure admissible

trading strategies and a finite superhedging cost. Note however that as long as ζ∗i (m) 6= m

we have Hstock < ∞, H fwd < ∞ and the stochastic integral
∫

(Hstock +H fwd)dX is a simple

sum and hence is well defined pathwise.

4.3 First proof of Theorem 3.1

As argued above, to finish the proof of Theorem 3.1 it suffices to exhibit P
max ∈ P(µ) such

that 1{X∗
T
≥m} = Y ζ∗

T P
max-a.s. for all m ≥ X0. The case of general lookback payoff then

follows since φ is non-decreasing.

Under Assumption A, Ob lój and Spoida [33] construct an iterated extension of the Azéma–

Yor embedding for µ1, . . . , µn in a Brownian motion. They define functions ηi and stopping

times τi, τ0 = 0, τi := inf{t ≥ τi−1 : Xt ≤ ηi(X
∗
t )}, 1 ≤ i ≤ n, such that Xτi ∼P0 µi and

(Xt∧τn) is uniformly integrable. Further, they compute explicitly the distribution of X∗
τi

.

We note that in fact maxj≤i ηj(m) = ζ∗i (m) for all m ≥ X0 and all 1 ≤ i ≤ n. Consider a

time change of X :

Zt := X
τi∧

(

τi−1∨
t−ti−1
ti−t

), for ti−1 < t ≤ ti, i = 1, . . . , n

2Indeed, the integrands are non-negative. Further, note that under Assumption A in [33] the functions

ζ∗
i
(m) are continuous and in particular measurable but the latter can be assumed in all generality. Indeed,

for a fixed m the set F (m) of minimisers in (3.1) is closed and for any closed K ⊂ R
n, {m : F (m)∩K 6= ∅}

is equal to {m : C(m) = CK(m)} where CK is given as C in (3.1) but with a further requirement that

(ζ1, . . . , ζn) ∈ K. Both C and CK can be obtained through countable pointwise minimisation of continuous

functions and hence are measurable and so is {m : C(m) = CK(m)}. Existence of a measurable selector for

F now follows from Kuratowski and Ryll-Nardzewski measurable selection theorem, see e.g. [40, Thm. 4.1].
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with Z0 = X0 and observe that (Zt) is a continuous, uniformly integrable, martingale on

[0, tn] with Zti = Xτi ∼P0 µi . In consequence, the distribution of Z, Pmax := P0 ◦ (Z)−1, is

an element of P(µ). By going back to the proof of Proposition 4.1 and inspecting the cases

where a strict inequality occurs one shows using the definition of τi, see [33, Definition 2.2,

Lemma 3.2], that for Z these are of measure zero.

5 The stochastic control approach

We now present the methodology which led us to conjecture (3.1) as the solution to the

superhedging cost. Our objective in this section is to derive the upper bound of Theorem

3.1 from the dual formulation of Proposition 2.1. Our first observation is that, from the

nondecrease of the payoff function φ, it follows from the monotone convergence theorem

that:

Uµ
n (ξ) = inf

λ∈Λµ
n(ξ)

sup
P∈P∗

{

µ(λ) + E
P[ξ − λ(Xt)]

}

, (5.1)

where

P∗ :=
{

P ∈ P : E
P[X∗

T ] <∞
}

. (5.2)

In the present approach, we assume in addition that

φ ∈ C1 Lipschitz, bounded, Supp(φ′) bounded from above,

and

∫ ∞

X0

(

ci
(

ζ∗i (m)
)

m− ζ∗i (m)
+

ci
(

ζ∗i+1(m)
)

m− ζ∗i+1(m)
1{i<n}

)

φ′(m)dm < ∞. (5.3)

We start with an essential ingredient, namely a general one-marginal construction which

allows to move from (n− 1) to n marginals.

5.1 The one marginal problem

For an inherited maximum M0 ≥ X0, we introduce the process:

Mt := M0 ∨X
∗
t for t ≥ 0.

The process (X,M) takes values in the state space ∆ := {(x,m) ∈ R
2 : x ≤ m}. Our

interest in this section is on the upper bound on the price of the one-marginal (n = 1)

Lookback option defined by the payoff

ξ = g(XT , X
∗
T ) for some g : R× R −→ R. (5.4)
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Assumption A Function g : R× R −→ R is C1 in (x,m), Lipschitz in m uniformly in

x, and gxx exists as a measure.

Assumption B The function x 7−→ gm(x,m)
m−x

is non-decreasing.

For a function λ : R −→ R, we denote gλ := g − λ, and we write simply

Λµ =
{

λ ∈ L
1(µ) : sup

P∈P∗

E
[

gλ(XT ,MT )+
]

<∞
}

(5.5)

for all probability measure µ ∈ M(R). Similar to Proposition 3.1 in [19], it follows from

the Dambis-Dubins-Schwartz time change theorem that the model-free upper bound can be

converted into:

Uµ(ξ) := inf
λ∈Λµ

sup
τ∈T ∗

{

µ(λ) + J(λ, τ)
}

where J(λ, τ) := E
P0
[

gλ(Xτ , X
∗
τ )
]

, (5.6)

and T ∗ is the collection of all stopping times τ such that

{Xt∧τ , t ≥ 0} is a P0−uniformly integrable martingale with E
P0
[

X∗
τ

]

<∞. (5.7)

Then for every fixed multiplier λ ∈ Λµ, we are facing the infinite horizon optimal stopping

problem

uλ(x,m) := sup
τ∈T ∗

E
P0
x,m

[

gλ(Xτ ,Mτ )
]

, (x,m) ∈ ∆, (5.8)

where E
P0
x,m denotes the conditional expectation operator E

P0 [·|(X0,M0) = (x,m)].

Finally, the set Λµ of (5.5) translates in the present context to:

Λµ =
{

λ ∈ L
1(µ) : sup

τ∈T ∗
E
P0
[

gλ(Xτ ,Mτ )
+
]

<∞
}

. (5.9)

Remark 5.1 The condition E
P0
[

X∗
τ

]

<∞ is equivalent to E
P0
[

Xτ (lnXτ )
+1Xτ>0

]

<∞, by

Doob’s L
1-inequality.

The dynamic programming equation corresponding to the optimal stopping problem uλ

defined in (5.8) is:

min
{

u− gλ,−uxx
}

= 0 for (x,m) ∈ ∆

um(m,m) = 0 for m ≥ 0.
(5.10)

It is then natural to introduce a candidate solution for the dynamic programming equation

defined by a free boundary {x = ψ(m)}, for some convenient function ψ:

vψ(x,m) = gλ(x ∧ ψ(m), m) + (x− ψ(m))+gλx(ψ(m), m) (5.11)

= gλ(x,m) −

∫ x∨ψ(m)

ψ(m)

(x− ξ)gλxx(ξ,m)dξ, 0 ≤ x ≤ m, (5.12)
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i.e. vψ(., m) coincides with the obstacle gλ before the exercise boundary ψ(m), and satisfies

vψxx(., m) = 0 in the continuation region [ψ(m), m]. However, the candidate solution needs

to satisfy more conditions. Namely vψ(., m) must be above the obstacle, concave in x on

(−∞, m], and it needs to satisfy the Neumann condition in (5.10).

For this reason, our strategy of proof consists in first restricting the minimization in (5.6)

to those multipliers λ in the set:

Λ̂µ :=
{

λ ∈ Λµ : vψ concave in x and vψ ≥ gλ for some ψ ∈ Ψλ
}

, (5.13)

where the set Ψλ is defined in (5.16) below so that our candidate solution vψ satisfies

the Neumann condition in (5.10). Namely, by formal differentiation of vψ, the Neumann

condition reduces to the ordinary differential equation (ODE):

−ψ′gλxx(ψ,m) = γ(ψ,m) where γ(x,m) := (m− x)
∂

∂x

{gm(x,m)

m− x

}

(5.14)

exists a.e. in view of Assumption B. Similar to [19], we need for technical reasons to consider

this ODE in the relaxed sense. Since gλ is concave in x on (−∞, ψ(m)], the partial second

derivative gλxx is well-defined as a measure on R. We then introduce the weak formulation

of the ODE (5.14):

ψ(m) < m for all m ∈ R,

and −

∫

ψ(E)

gλxx(., ψ
−1)(dξ) =

∫

E

γ(ψ, .)(dm) for all E ∈ B(R),
(5.15)

where ψ is chosen in its right-continuous version, and is non-decreasing by the concavity of

gλ and the non-negativity of γ implied by Assumption B. We introduce the collection of all

relaxed solutions of (5.14):

Ψλ :=
{

ψ : R → R right-continuous and satisfies (5.15)
}

. (5.16)

Notice that the ODE (5.14), which motivates the relaxation (5.15), does not characterize

the free boundary ψ as it is not complemented by any boundary condition.

Remark 5.2 For later use, we observe that (5.15) implies by direct integration that

the function x 7−→ λ(x) −
∫ x

ψ(X0)

∫ ψ−1(y)

X0

gm(ψ(ξ),ξ)
ξ−ψ(ξ)

dξdy −
∫ x

ψ(X0)
gx(ξ, ψ

−1(ξ))dξ is affine.

Proposition 5.1 Let Assumptions A and B hold true. Then:

uλ ≤ vψ for any λ ∈ Λ̂µ and ψ ∈ Ψλ.
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Proof Assumption B guarantees that the function ψ that we will be manipulating is non-

decreasing and has a well defined right-continuous inverse. We proceed in three steps.

1. We first prove that vψ is differentiable in m on the diagonal with

vψm(m,m) = 0 for all m ∈ R. (5.17)

Indeed, since ψ ∈ Ψλ, it follows from Remark 5.2 that

λ(x) = α0 + α1x+

∫ x

ψ(X0)

∫ ψ−1(y)

X0

gm(ψ(ξ), ξ)

ξ − ψ(ξ)
dξdy +

∫ x

ψ(X0)

gx(ξ, ψ
−1(ξ))dξ

for some constants α0, α1. Plugging this expression into (5.11), we see that for ψ(m) ≤ x ≤

m:

vψ(x,m) = g(ψ(m), m) −
(

α1 +

∫ m

X0

gm(ψ(ξ), ξ)

ξ − ψ(ξ)
dξ
)

(

x− ψ(m)
)

−
(

α0 + α1ψ(m) +

∫ ψ(m)

ψ(X0)

∫ ψ−1(y)

X0

gm(ψ(ξ), ξ)

ξ − ψ(ξ)
dξdy +

∫ ψ(m)

ψ(X0)

gx(ξ, ψ
−1(ξ))dξ

)

= g
(

ψ(m), m
)

− α0 − α1x−

∫ m

X0

gm
(

ψ(ξ), ξ
)x− ψ(ξ)

ξ − ψ(ξ)
dξ −

∫ ψ(m)

ψ(X0)

gx
(

ξ, ψ−1(ξ)
)

dξ.

Since g is C1, (5.17) follows by direct differentiation with respect to m.

2. Let τ ∈ T ∗ be arbitrary. Clearly, it is sufficient to restrict attention to those τ ∈ T ∗ such

that gλ(Xτ ,Mτ ) ∈ L
1(P0).

Define the sequence of stopping times τn := τ ∧ inf{t > 0 : |Xt − x| > n}. Since vψ is

concave, it follows from the Itô-Tanaka formula that:

vψ(x,m) ≥ vψ(Xτn,Mτn) −

∫ τn

0

vψx (Xt,Mt)dBt −

∫ τn

0

vψm(Xt,Mt)dMt

Notice that (Mt −Xt)dMt = 0. Then since vψm(m,m) = 0, it follows that vψm(Xt,Mt)dMt =

vψm(Mt,Mt)dMt = 0, and therefore:

vψ(x,m) ≥ vψ(Xτn ,Mτn) −

∫ τn

0

vψx (Xt,Mt)dXt.

Taking expectations in the last inequality, we see that:

vψ(x,m) ≥ E
P0
x,m

[

vψ(Xτn ,Mτn)
]

. (5.18)

3. By the Lipschitz property of g in m uniformly in x (Assumption A):

∣

∣gλ
(

Xτ ,Mτn

)
∣

∣ ≤
∣

∣gλ
(

Xτ ,Mτ

)
∣

∣ + κMτ

for some constant κ. Since gλ
(

Xτ ,Mτ

)

∈ L
1(P0) and Mτ ∈ L

1(P0), by the definition of T ∗,

this shows that gλ(Xτ ,Mτn) ∈ L
1(P0). We next deduce from the concavity of vψ in x that:

vψ
(

Xτn ,Mτn

)

+ vψx
(

Xτn ,Mτn

)

(Xτ −Xτn) ≥ vψ
(

Xτ ,Mτn

)

.
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Since (Xt∧τ )t≥0 is a uniformly integrable martingale, this provides:

vψ
(

Xτn ,Mτn

)

≥ E
P0

[

vψ
(

Xτ ,Mτn

)
∣

∣Fτn

]

≥ E
P0

[

gλ
(

Xτ ,Mτn

)
∣

∣Fτn

]

, (5.19)

where the last inequality follows from the fact that vψ is above the obstacle gλ. Then

it follows from (5.18) together with the tower property of conditional expectations that

v(x,m) ≥ E
P0
x,m

[

gλ(Xτ ,Mτn)
]

. Using again Assumption A, we then see that:

vψ(x,m) ≥ E
P0
x,m

[

gλ(Xτ ,Mτ ) − κ(Mτ −Mτn)
]

ր E
P0
x,m

[

gλ(Xτ ,Mτ )
]

,

by the monotone convergence theorem. By the arbitrariness of τ ∈ T ∗, this implies that

vψ ≥ uλ. 2

Remark 5.3 In the special case g(x,m) = φ(m) for some C1 non-decreasing function φ,

the Lipschitz property in Assumption A can be dropped by using the monotone convergence

theorem in the passage to the limit after equation (5.19), see [19].

Remark 5.4 The analysis of the present section can be developed further to prove that,

under the present conditions, the Azéma-Yor solution of the Skorokhod embedding problem

defines the optimal upper bound for the one-marginal constraint problem. Since this result

is not needed for the proof of Theorem 3.1, we report it for completeness in Section 6.

5.2 Multiple-marginals penalized value function

We now continue our general methodology and return to the multiple-marginal problem of

Section 2.3. Our aim is to prove Theorem 3.1 and derive the robust superhedging bounds

for a Lookback derivative security

φ(X∗
T ) given the marginals Xti ∼ µi for all i = 1, . . . , n. (5.20)

We recall that the probability measures µi are defined from market prices which do not

admit arbitrage, i.e. (2.4) holds.

Using the notation introduced in Section 2.3, we recall that the robust superhedging bound

can be expressed in the dual formulation of Proposition 2.1 as:

Uµ
n (ξ) := inf

λ∈Λµ
n(ξ)

{

µ(λ) + uλ(X0, X0)
}

, where uλ(x,m) := sup
P∈P∗

E
P

x,m

[

φλ(Xt,Mtn)
]

,(5.21)

with φλ := φ−
∑n

i=1 λi as in (2.5), and the set of Lagrange multipliers is:

Λµ
n(ξ) =

{

λ = (λ1, . . . , λn) : λi ∈ L
1(µi) and sup

P∈P∗

E
P
[

φλ
(

Xt, X
∗
tn

)+]
<∞

}

. (5.22)
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Our approach to solve the present n−marginals Skorokhod embedding problem is to intro-

duce the sequence of intermediate optimization problems:

un(x,m) = φ(m) and uk−1(x,m) = sup
P∈P∗

E
P

tk−1,x,m

[

uλk(Xtk ,Mtk)
]

, k ≤ n, (5.23)

where E
P

tk−1,x,m
= E

P
[

· |(X,M)tk−1
= (x,m)

]

, and:

uλk(x,m) := uk(x,m) − λk(x) for (x,m) ∈ ∆. (5.24)

Given this iterative sequence of value functions, it follows from the dynamic programming

principle that our problem of interest is given by:

uλ = uλ0 for all λ ∈ Λµ
n(ξ).

From the Dambis-Dubins-Schwartz theorem (see Proposition 3.1 in [19]), we may convert

the stochastic control problem in (5.23) into a sequence of optimal stopping problems:

uk−1(x,m) = sup
τ∈T ∗

E
P0
x,m

[

uλk(Xτ ,Mτ )
]

. (5.25)

Then, denoting by S∗
n := {τ = (τ1, . . . , τn) ∈ T ∗ : τ1 ≤ · · · ≤ τn}, we see that

Uµ
n (ξ) = inf

λ∈Λµ
n(ξ)

{

µ(λ) + uλ0(X0, X0)
}

where uλ0(x,m) := sup
τ∈S∗

n

E
P0
x,m

[

φλ
(

Xτ ,Mτn

)]

,(5.26)

and the set Λµ
n(ξ) of (5.22) translates in the present context to:

Λµ
n(ξ) =

{

λ = (λ1, . . . , λn) : λi ∈ L
1(µ) and sup

τ∈S∗
n

E
P0
[

φλ(Xτ , X
∗
τn

)+ <∞
]

}

. (5.27)

5.3 Preparation for the upper bound

The function uk−1 corresponds to the optimization problem considered in Section 5.1 with a

payoff g(x,m) = uk(x,m) depending on the spot and the running maximum. This was our

original motivation for isolating the one-marginal problem.

To solve the multiple marginals problem, we introduce the iterative sequence of candidate

value functions:

vn(x,m) := φ(m), vλk (x,m) := vk(x,m) − λk(x), and

vk−1(x,m) := vλk (x ∧ ψk(m), m) +
(

x− ψk(m)
)+
∂xv

λ
k

(

ψk(m), m
)

(5.28)

= vλk (x,m) −

∫ x∨ψk(m)

ψk(m)

(x− ξ)∂xxv
λ
k (dξ,m),

where ψ = (ψ1, . . . , ψn) with ψi defined as an arbitrary solution of the ordinary differential

equation

−ψ′
k∂xxv

λ
k (ψk, m) = γk(ψk, m), with γk(x,m) := (m− x)∂x

{∂mvk(x,m)

m− x

}

, (5.29)
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which stays strictly below the diagonal. Notice that, in contrast to the one-marginal case,

we have dropped here the dependence of vk in ψ by simply denoting vk := vψk and vλk := vψ,λk .

Similar to the one-marginal case, we introduce the weak formulation of this ODE:

ψk(m) < m for all m ≥ 0, and

−
∫

ψ(E)
∂xxv

λ
k

(

., ψ−1
k

)

(dξ) =
∫

E
γk(ψk, .)(dm) for all E ∈ B(R),

(5.30)

and we introduce the set

Ψλ
n :=

{

ψ : R → R
n with right-continuous entries ψk satisfying (5.30), k ≤ n

}

. (5.31)

We also follow the one-marginal case by restricting the minimization in (5.26) to those

multipliers λ in the set:

Λ̂µ
n(ξ) :=

{

λ ∈ Λµ
n(ξ) : vk−1 concave in x and vk−1 ≥ vλk for all k ≤ n

}

. (5.32)

Lemma 5.1 Let φ be a C1(R) non-decreasing Lipschitz function. Then:

(i) for all i = 1, . . . , n, the function vi satisfies Assumptions A and B, i.e. vi is C
1 in

(x,m), Lipschitz in m uniformly in x, ∂xxvi exists a.e. and x 7−→ ∂mvi(x,m)/(m − x) is

non-decreasing,

(ii) for all i = 1, . . . , n, the function ∂mvi is concave in x,

(iii) uλ(X0, X0) ≤ v0(X0, X0) for all λ ∈ Λ̂µ
n and ψ ∈ Ψλ

n.

Proof We first prove (i). First vn = φ satisfies Assumptions A and B as it is independent

of the x−variable, non-decreasing and C1 Lipschitz. For the remaining cases i ≤ n− 1, we

proceed by induction, assuming that vi+1 satisfies Assumptions A and B, and we intend to

show that vi does as well. We first observe that either one of the following condition is also

satisfied by vi+1:

vi(x,m) = φ(m) non-decreasing, or ∂mvi(m,m) = 0, (5.33)

where the first alternative holds for i = n. vi−1 is clearly C1, and by using the ODE (5.29)

satisfied by vi, we directly compute that

∂mvi−1(x,m) =

{

∂mvi(x,m) for x ∈ (−∞, ψi(m)]

∂mvi(ψi(m), m) m−x
m−ψi(m)

for x ∈ [ψi(m), m].
(5.34)

Then vi−1 inherits the Lipschitz property of g in m, uniformly in x. Moreover, x 7−→

∂mvi−1(x,m)/(m− x) is non-decreasing whenever x 7−→ ∂mvi(x,m)/(m− x) is.

We next prove (iii). By the previous step, vi satisfies Assumptions A and B for all i =

1, . . . , n. Then it follows from Proposition 5.1 that un−1 ≤ vn−1 for all ψ ∈ Ψλn. Therefore

un−2(x,m) ≤ sup
τn−1∈T ∗

E
P

x,m

[

vλn−1(Xτn−1 , X
∗
τn−1

)
]

,
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and we deduce from a second application of Proposition 5.1 that un−2 ≤ vn−2. The required

inequality follows by a backward iteration of this argument.

We finally prove (ii). From (5.34), we see that ∂mvi−1 is concave in x on
(

− ∞, ψi(m)
)

and on
(

ψi(m), m
]

. It remains to verify that ∂mvi−1 is concave at the point x = ψi(m). We

directly calculate that

∂xmvi−1

(

ψi(m)−, m
)

= ∂xmvi
(

ψi(m)−, m
)

and ∂xmvi−1

(

ψi(m)+, m
)

=
−∂mvi

(

ψi(m), m
)

m− ψi(m)
.

Then, by the concavity of ∂mvi in x, together with (5.33), we have

∂mvi
(

ψi(m), m
)

+ ∂xmvi
(

ψi(m)+, m
)(

m− ψi(m)
)

≥ ∂mvi
(

m,m
)

≥ 0,

which implies that ∂xmvi−1

(

ψi(m)−, m
)

≥ ∂xmvi−1

(

ψi(m)+, m
)

. 2

Our next result uses the notation:

δi(x,m) := ci(x) − c0(x)1{m<X0} (x,m) ∈ ∆. (5.35)

Lemma 5.2 Let φ be a C1 non-decreasing Lipschitz function. Then, for all λ ∈ Λ̂µ
n and

ψ ∈ Ψλ
n, we have:

µ(λ) + uλ(X0, X0) ≤ µ(λ) + v0(X0, X0)

= φ(X0) +
n
∑

i=1

∫

δi
(

ξ, ψ−1
i (ξ)

)

λ′′i (dξ) −

∫ X0

ψi(X0)

c0(ξ)∂xxvi(ξ,X0)dξ.

Proof This is a direct consequence of Lemma 5.1 obtained by substituting the expression

of the vi’s, and using the fact that µi(λi) − λi(X0) =
∫

λ′′i d(µ− δX0). 2

The following result provides the necessary calculations for the terms which appear in

Lemma 5.2. We denote:

ψi := ψi ∧ . . . ∧ ψn for all i = 1, . . . , n, (5.36)

and we set ψn+1(m) := m, m ≥ 0.

Lemma 5.3 For a C1 non-decreasing Lipschitz function φ, λ ∈ Λµ
n(ξ), ψ ∈ Ψλ

n, and i ≤ n,

we have:

(i)

∫

δi
(

., ψ−1
i

)

dλ′i =

∫

(δi
(

ψi, .
)

(m)

m− ψi(m)
−
δi
(

ψi+1, ψ
−1
i ◦ ψi+1

)

(m)

m− ψi+1(m)
1{i<n}

)(

1{
ψi<ψi+1

}φ′
)

(m)dm,

(ii)

∫ X0

ψi(X0)

c0(ξ)∂xxvi(ξ,X0)dξ = −1{i<n}

∫ X0

0

c0
(

ψi+1(m)
)

m− ψi+1(m)
1{

ψi+1(m)>ψi(X0)
}φ′(m)dm.
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Proof See Section 7. 2

Plugging these calculations into the estimate of Lemma 5.2 provides:

Lemma 5.4 Let φ be a C1 non-decreasing Lipschitz function. Then, for all λ ∈ Λ̂µ
n and

ψ ∈ Ψλ
n, we have:

µ(λ) + uλ(X0, X0)

≤ µ(λ) + v0(X0, X0)

= φ(X0) +

∫ n
∑

i=1

(δi
(

ψi(m), m
)

m− ψi(m)
−
δi
(

ψi+1(m), m
)

m− ψi+1(m)
1{i<n}

)(

φ′1{ψi<ψi+1}

)

(m) dm.

with ψn+1(m) := m, m ≥ 0.

Proof By Lemmas 5.2 and 5.3 (i), we have

µ(λ) + uλ(X0, X0) ≤ φ(X0) +

∫

φ′(m)

n
∑

i=1

1{ψi(m)<ψi+1(m)}Ai(m)dm,

where

Ai(m) =
ci
(

ψi(m)
)

− c0
(

ψi(m)
)

1{m<X0}

m− ψi(m)

−
ci
(

ψi+1(m)
)

− c0
(

ψi+1(m)
)(

1{ψi+1(m)<ψi(X0)}
+ 1{m<X0}1{ψi+1(m)>ψi(X0)}

)

m− ψi+1(m)
.

Notice that m < X0 on {ψi(m) < ψi+1(m)}. Then

Ai(m) =
ci
(

ψi(m)
)

− c0
(

ψi(m)
)

1{m<X0}

m− ψi(m)
−
ci
(

ψi+1(m)
)

− c0
(

ψi+1(m)
)

1{m<X0}

m− ψi+1(m)

on {ψi(m) < ψi+1(m)}.

2

We now consider the problem of minimisation inside the integral in the expression obtained

in Lemma 5.4, forgetting about the constraints on the ψi’s.

Lemma 5.5 Under the no-arbitrage condition (2.4), we have

min
ζ1≤...≤ζn<m

n
∑

i=1

{δi(ζi, m)

m− ζi
−
δi(ζi+1, m)

m− ζi+1

}

= 0 for m < X0,

and the minimum is attained at ζ∗i = 0, i = 1, . . . , n.

23



Proof Since m < X0 and ζi < m for all i ≤ n, it follows that c0(ζi)1{m<X0} = c0(ζi). We

proceed by induction.

1. Notice that ζ1 only appears in the first term of the sum. The partial minimization with

respect to ζ1 reduces to

min
ζ1≤ζ2

c1(ζ1) − c0(ζ1)

m− ζ1
.

By the no-arbitrage condition the function to be minimized is nonnegative, and is zero for

ζ∗1 = 0.

2. For 2 ≤ i ≤ n, assume that ζ∗i−1 = 0 realizes the minimum over ζi−1. Then, the partial

minimization with respect to ζi reduces to

min
0≤ζi<m

ci(ζi) − c0(ζi)

m− ζi
1{ζi<ζi+1} −

ci−1(ζi) − c0(ζi)

m− ζi
.

Since ci ≥ ci−1 by the no-arbitrage condition, it is clear that the latter minimum is zero and

attained at ζ∗i = 0. 2

5.4 Second Proof of Theorem 3.1 under (5.3)

1. Given the results of Lemma 5.4, we prove in this first step that the pointwise minimisation

of Lemma 5.5 and (3.1) can be achieved by some vector of Lagrange multipliers λ∗ =

(λ∗1, . . . , λ
∗
n) ∈ Λµ

n(ξ), thus implying that our required upper bound satisfies:

Uµ
n (ξ) ≤ φ(X0) +

∫ ∞

X0

n
∑

i=1

( ci
(

ζ∗i (m)
)

m− ζ∗i (m)
−
ci
(

ζ∗i+1(m), m
)

m− ζ∗i+1(m)
1{i<n}

)

φ′(m) dm. (5.37)

In order to define λ∗, we take a family of functions ψ∗
i satisfying:

ψ∗
1 := b−1

1 , ψ∗
n := ζ∗n, and ψ

∗

i := ψ∗
i ∧ · · · ∧ ψ∗

n = ζ∗i , 1 < i < n,

i.e. ψ∗
i is an extension of ζ∗i for all i = 1, . . . , n. Here b1 is the barycenter function of µ1, see

(6.1) below, and the fact that ψ∗
1 := b−1

1 is a minimizer in (3.1) is easily verified as in [9].

For our purpose here the precise form of ψ∗
i does not matter. Indeed, direct verifica-

tion reveals that the functions λi introduced in (4.4) solve system of ODEs (5.29). Under

our assumption that the support of φ′ is bounded from above, it also follows that, up

to a linear function, λi is bounded from below. Then supP∈P∗ E
P
[(

φ(X∗
T ) − λ(Xt)

)+]
≤

sup
P∈P∗ E

P
[

φ(X∗
T )+
]

<∞.

The final ingredient to verify, in order for λ∗ ∈ Λµ
n(ξ) which implies that inequality (5.37)

holds, is that λ∗i ∈ L
1(µi). To see this, we follow the same calculations as in the proof of

Lemma 5.4 to see that

µi(λ
∗
i ) ≤ Const +

∫

(

ci
(

ψ
∗

i (m)
)

m− ψ
∗

i (m)
−

ci
(

ψ
∗

i+1(m)
)

m− ψ
∗

i+1(m)

)

φ′(m)1{ψ
∗
i (m)<ψ

∗
i+1(m)}dm
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proving the required integrability by our condition (5.3).

2. Now we prove that equality holds in (3.2) if [33, Assumption A] is in place.

Recall that [33], under their Assumption A, construct an embedding τ̂1, . . . , τ̂n of µ1, . . . , µn.

In addition they obtain the law of X∗
τ̂n

which we plug in at the last equality sign of the

following display. By the expression of Uµ
n (ξ) in (5.26), it follows that:

Uµ
n (ξ) ≥ inf

λ∈Λµ
n(ξ)

{

µ(λ) + E
P0

[

φ
(

X∗
τ̂n

)

−
n
∑

i=1

λi
(

Xτ̂i

)

]}

= E
P0
[

φ
(

X∗
τ̂n

)]

[33]
= φ(X0) +

n
∑

i=1

∫ ∞

X0

(

ci(ζ̃i(m))

m− ζ̃i(m)
−

ci(ζ̃i+1(m))

m− ζ̃i+1(m)
1{i<n}

)

φ′(m)dm, (5.38)

for some ζ̃1(y) ≤ · · · ≤ ζ̃n(y). The proof is complete by comparing the expression inside the

integral in (5.38) with (3.1) and recalling that ζ∗1 , . . . , ζ
∗
n was chosen as the minimizer of the

latter.

6 The Azéma-Yor embedding solves the one-marginal

problem

In this subsection, we return to the one-marginal context of Subsection 5.1. The endpoints

of the support of the distribution µ are denoted by:

ℓµ := sup
{

x : µ
(

[x,∞)
)

= 1
}

and rµ := inf
{

x : µ
(

(x,∞)
)

= 0
}

We introduce the so-called barycenter function:

b(x) :=

∫

[x,∞)
yµ(dy)

µ
(

[x,∞)
) 1{x<rµ} + x 1{x≥rµ}, x ≥ 0. (6.1)

The Azéma-Yor [2, 3] solution of the Skorokhod Embedding Problem is:

τ ∗ := inf
{

t > 0 : X∗
t ≥ b(Xt)

}

. (6.2)

Plugging ψ∗ := b−1 in the ODE (5.15), we obtain the function

λ∗(x) :=

∫ x

ℓµ

∫ y

ℓµ
gm
(

ξ, b(ξ)
) µ(dξ)

µ([ξ,∞))
dy +

∫ x

ℓµ
gx(ξ, b(ξ))dξ; x ∈ (−∞, rµ), (6.3)

whose well-posedness will be guaranteed by the following condition.

In this subsection, we need the following additional condition on the payoff function

g(x,m):
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Assumption C g is Lipschitz in x, uniformly in m, (g − λ∗)+ is bounded, and

gxx(dx,m) − gxx(dx, b(x)) ≤ γ(x, b(x))b(dx) whenever b(x) ≤ m.

Under this additional condition, we now verify that λ∗ ∈ L
1(µ). Indeed, following Step 1

of the proof of Lemma 3.2 in [19], this is equivalent to the integrability of c(.) with respect

to the measure (λ∗)′′, and it follows from the ODE (5.15) that

∫

c(x)(λ∗)′′(dx) =

∫ ∞

X0

c(ψ∗(m))
(

γ(ψ∗(m), m)dm + gxx(ψ
∗(m), m)dψ∗(m)

)

=

∫ ∞

X0

c(ψ∗(m))
(gm(ψ∗(m), m)

m− ψ∗(m)
dm + dgx(ψ

∗(m), m)
)

=

∫ ∞

X0

c(ψ∗(m))

m− ψ∗(m)
gm(ψ∗(m), m)dm+

∫ ∞

X0

c(ψ∗(m))dgx(ψ
∗(m), m)

Since c(ψ∗(∞)) = 0 and c(ℓµ) = X0, the second integral is well-defined and finite either by

the boundedness of gx in Assumption C.

As for the first integral, it follows from the boundedness of gm in Assumption A that
∫∞

X0

c(ψ∗(m))
m−ψ∗(m)

|gm(ψ∗(m), m)|dm ≤ |gm|∞
∫∞

X0

c(ψ∗(m))
m−ψ∗(m)

dm <∞. Hence λ∗ ∈ L
1(µ).

The following result has been by Hobson and Klimmek [22] under slightly different condi-

tions than those in Assumption 6. Our objective is to derive it directly from our stochastic

control approach.

Theorem 6.1 Let ξ = g(XT , X
∗
T ) for some payoff function g satisfying Assumptions A, B,

and C. Then, for any µ ∈M(R), the pair (λ∗, τ ∗) is a solution of the problem Uµ(ξ), and:

Uµ(ξ) = J(λ∗, τ ∗) = E
P0
[

g
(

Xτ∗ , X
∗
τ∗

)]

.

The remaining part of this section is dedicated to the proof of this result.

We first observe that, under the present assumptions, we may also restrict the maximization

to the subset P∗. This is due to the fact that Proposition 5.1 is only needed to be applied

with λ∗, so that the boundedness assumption on (g − λ∗)+ justifies the restriction to P∗.

Our starting point is the result of Proposition 5.1 which provides an upper bound for the

value function Uµ(ξ) for every choice of a multiplier λ ∈ Λ̂µ and a corresponding solution

ψ ∈ Ψλ of the ODE (5.15):

Uµ(ξ) ≤ µ(λ) + vψ(X0, X0) for all λ ∈ Λ̂µ and ψ ∈ Ψλ. (6.4)

Alternatively, for any choice of a non-decreasing function ψ with ψ(m) < m for all m ∈ R,

we may define a corresponding multiplier function λ by (5.15), or equivalently by (5.14),
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in the distribution sense. Then ψ ∈ Ψλ. If in addition vψ is concave in x and above

the corresponding obstacle gλ, then λ ∈ Λ̂µ and we may conclude by Proposition 5.1 that

Uµ(ξ) ≤ µ(λ)vψ. The next result exhibits this bound for the choice ψ = b−1, the right-

continuous inverse of the barycenter function.

Proposition 6.1 Let ξ be given by (5.4). Then, under Assumptions A, B and C, we have:

Uµ(ξ) ≤ µ(λ∗) + J(λ∗, τ ∗) = E
P0 [g (Xτ∗ , X

∗
τ∗)].

Proof It is immediately checked that ψ∗ := b−1 ∈ Ψλ∗ . Moreover, by Assumption C and

the subsequent discussion, λ∗ ∈ L
1(µ), and supτ∈T ∗ E

P0[gλ
∗
(Xτ , X

∗
τ )
]

<∞. Then, in view of

the previous discussion, the required inequality follows from Proposition 5.1 once we prove

that vψ
∗

is concave, and that vψ
∗
≥ gλ

∗
.

1. We first verify that vψ
∗

is concave. By direct computation using the expression of λ∗ in

(6.3) together with the identity

b(dx)

b(x) − x
=

µ(dx)

µ([x,∞))
,

we see that

gλ
∗

xx(x,m) = gxx(x,m) − gxx
(

x, b(x)
)

− γ
(

x, b(x)
)

b′(x) (6.5)

in the distribution sense. By Assumption C, it follows that x 7−→ gλ
∗
(x,m) is concave on

(−∞, ψ∗(m)]. Since vψ(., m) is linear on [ψ∗(m), m] and C1 across the boundary ψ∗(m), this

proves that vψ is concave.

2. We next check that vψ
∗
≥ gλ

∗
. Since equality holds on (−∞, ψ∗(m)], we only compute

for x ∈ [ψ∗(m), m] that:

(

vψ
∗

− gλ
∗)

(x,m) =

∫ x

ψ∗(m)

(

gλ
∗

x (ψ∗(m), m) − gλ
∗

x (ξ,m)
)

dξ

= −

∫ x

ψ∗(m)

∫ ξ

ψ∗(m)

gλ
∗

xx(y,m)dydξ.

By (6.5), this provides:

(

vψ
∗

− gλ
∗)

(x,m) = −

∫ x

ψ∗(m)

(

gx(ξ,m) − gx
(

ξ, b(ξ)
)

−

∫ ξ

ψ∗(m)

gm(y, b(y))

b(y) − y
b(dy)

)

dξ

=

∫ x

ψ∗(m)

∫ ξ

ψ∗(m)

(

gxm
(

ξ, b(y)
)

+
gm
(

y, b(y)
)

b(y) − y

)

b(dy)dξ

=

∫ x

ψ∗(m)

(

∫ x

y

gxm(ξ, b(y))dξ +
gm(y, b(y))

b(y) − y

)

b(dy)

=

∫ x

ψ∗(m)

(b(y) − x)
(gm(x, b(y))

b(y) − x
−
gm(y, b(y))

b(y) − y

)

b(dy) ≥ 0,
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where the last inequality follows from the nondecrease of b and x 7−→ gm(x,m)/(m − x)

(Assumption B), together with the fact that b(y) ≥ x for ψ(m) ≤ y ≤ x ≤ m. 2

Proof of Theorem 6.1 To complete the proof of the theorem, it remains to prove that

inf
λ∈Λµ

{

µ(λ) + uλ(X0, X0)
}

≥ E
P0
X0,X0

[g (Xτ∗ , X
∗
τ∗)].

To see this, we use the fact that the stopping time τ ∗ defined in (6.2) is a solution of

the Skorokhod embedding problem, i.e. Xτ∗ ∼ µ and (Xt∧τ∗)t≥0 is a uniformly integrable

martingale, see Azéma and Yor [2, 3]. Moreover X∗
τ∗ is integrable. Then, for all λ ∈ Λµ, it

follows from the definition of uλ that uλ(X0, X0) ≥ J(λ, τ ∗), and therefore:

µ(λ) + uλ(X0, X0) ≥ µ(λ) + E
P0
X0,X0

[

g(Xτ∗, X
∗
τ∗) − λ(Xτ∗)

]

= E
P0
X0,X0

[

g(Xτ∗, X
∗
τ∗)
]

.

2

We conclude this section by a formal justification that the function b−1 appears naturally

if one searches for the best upper bound in (6.4).

Step 1: using the expression (5.12) of vψ, we directly compute that

µ(λ) + uλ(X0, X0) = µ
(

g(., X0)
)

+ µ
(

gλ(., X0)
)

−

∫ X0

ψ(X0)

gλxx(ξ,X0)(X0 − ξ)dξ

= µ
(

g(., X0)
)

+

∫

gλxx(ξ,X0)
(

c(ξ) − c0(ξ)1{ξ≤ψ(X0)}

)

dξ

= µ
(

g(., X0)
)

+

∫

gλxx
(

ξ, ψ−1(ξ)
)(

c(ξ) − c0(ξ)1{ξ≤ψ(X0)}

)

dξ

+

∫

(

gxx(ξ,X0) − gxx
(

ξ, ψ−1(ξ)
))(

c(ξ) − c0(ξ)1{ξ≤ψ(X0)}

)

dξ,

where the second equality follows from two integrations by parts together with the fact that
∫

xµ(dx) = X0, see Step 1 of the proof of Lemma 3.2 in [19]. Then, by using the ODE (5.15)

satisfied by ψ to change variables in the last integral, we see that:

µ(λ) + uλ(X0, X0) = µ
(

g(., X0)
)

+

∫

{

− γ
(

ψ(m), m
)

+G
(

ψ(m), m
)

ψ′(m)
}

δ
(

ψ(m), m
)

dm,

where we denoted:

δ(x,m) := c(x) − c0(x)1{m≤X0}, c0(x) := (X0 − x)+,

and G(x,m) := gxx(x,X0) − gxx(x,m).

Step 2: The expression of µ(λ) + vψ derived in the previous step only involves the function

ψ ∈ Ψλ. Forgetting about all constraints on ψ, we treat our minimization problem as
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a standard problem of calculus of variations. The local Euler-Lagrange equation for this

problem is:

d

dx
(Gδ)(ψ,m) = −(γδ)x(ψ,m) + (Gδ)x(ψ,m)ψ′.

Since (Gδm)(x,m) = 0, this reduces to

0 = (Gmδ + γδx + γxδ)(ψ,m)

= (m− ψ)γ(ψ,m)
∂

∂x

{δ(x,m)

m− x

}

x=ψ
.

This shows formally that the solution of the minimization problem:

min
ξ<m

δ(x,m)

m− x

provides a solution to the local Euler-Lagrange equation. Finally, the solution of the above

minimization problem is known to be given by the right inverse barycenter function b−1, see

the proof of Lemma 3.3 in [19].

7 Appendix

This section contains the proof of Lemma 5.3. We start with the computation of γi(ψi, .),

as defined in (5.29), in terms of g and the ψi’s.

Lemma 7.1 For all i < n, we have γi
(

ψi(m), m
)

= φ′(m)
m−ψi(m)

1{ψi<ψi+1}
.

Proof By direct differentiation of (5.28), we see that:

∂mvi−1(x,m) = ∂mvi(x ∧ ψi(m), m)

+(x− ψi(m))+
[

∂xxvi(ψi(m), m)ψ′
i(m) + ∂xmvi(ψi(m), m)

]

.

Using the ODE satisfied by ψi, this provides:

∂mvi−1(x,m) = ∂mvi(x ∧ ψi(m), m) +
(x− ψi(m))+

m− ψi(m)
∂mvi(x ∧ ψi(m), m)

=
m− x ∨ ψi(m)

m− ψi(m)
∂mvi(x ∧ ψi(m), m). (7.1)

Differentiating this expression with respect to x, we also compute that:

∂mxvi−1(x,m) = 1{x<ψi(m)}∂mxvi(x ∧ ψi(m), m) (7.2)

+1{x>ψi(m)}
−1

m− ψi(m)
∂mvi(x ∧ ψi(m), m).
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From the expression of γi, it follows from (7.1) and (7.2) that:

γi−1(x,m) = 1{x<ψi(m)}γi(x,m) = · · · = 1{x<ψi(m)}γn(x,m) = 1{x<ψi(m)}

φ′(m)

m− x
.

2

Proof of Lemma 5.3 (i) In this proof, we ignore the possible discontinuities of ψi and

ψ−1
i for simplicity. For any integrable function ϕ, the following claim:

∫

ϕ(ξ)λ′′i (ξ)dξ=

∫

( ϕ(ψi(m))

m− ψi(m)
1{ψi(m)<ψi+1(m)}−

k
∑

j=i+1

ϕ(ψj(m))

m− ψj(m)
1{ψi(m)<ψj (m)=ψj(m)}

)

φ′(m)dm

+

∫

ϕ(ξ)
[

∂xxvk
(

ξ, ψ−1
i (ξ)

)

−∂xxvk
(

ξ, (ψ−1
i+1 ∨ . . . ∨ ψ

−1
k )(ξ)

)

]

(7.3)

1{ψ−1
i

(ξ)>(ψ−1
i+1∨...∨ψ

−1
k

)(ξ)}dξ,

which will be proved below by induction, implies the required result by applying it to the

function ϕ(ξ) = δi(ξ, ψ
−1
i (ξ)), with k = n− 1, and using the fact that vn = φ is independent

of x.

We next start verifying (7.3) for k = i+ 1. The first ingredient for the verification of (7.3)

is the fact that

∂xxvj(x,m) = ∂xxv
λ
j+1(x,m)1{x<ψj+1(m)}, where vλj = vj − λj. (7.4)

which can be immediately checked from the expression of vi in (5.28).

1. To see that (7.3) holds true with k = i + 1, we first decompose the integral so as to use

the ODE satisfied by ψi:

∫

ϕλ′′i = −

∫

ϕ(ξ)∂xxv
λ
i

(

ξ, ψ−1
i (ξ)

)

dξ +

∫

ϕ(ξ)∂xxvi
(

ξ, ψ−1
i (ξ)

)

dξ

=

∫

ϕ
(

ψi(m)
)

γi
(

ψi(m), m
)

dm+

∫

ϕ(ξ)∂xxvi
(

ξ, ψ−1
i (ξ)

)

dξ.

We next substitute the expression of γi(ψi, .) from Lemma 7.1, and use (7.4) for the second

integral:

∫

ϕλ′′i =

∫

ϕ(ψi(m))

m− ψi(m)
1{ψi(m)<ψi+1(m)}dm+

∫

ϕ(ξ)∂xxv
λ
i+1

(

ξ, ψ−1
i (ξ)

)

1{ψ−1
i+1(ξ)<ψ

−1
i (ξ)}dξ

=

∫

ϕ(ψi(m))

m− ψi(m)
1{ψi(m)<ψi+1(m)}dm+

∫

ϕ(ξ)∂xxv
λ
i+1

(

ξ, ψ−1
i+1(ξ)

)

1{ψ−1
i+1(ξ)<ψ

−1
i (ξ)}dξ

+

∫

ϕ(ξ)
[

∂xxv
λ
i+1

(

ξ, ψ−1
i (ξ)

)

− ∂xxv
λ
i+1

(

ξ, ψ−1
i+1(ξ)

)]

1{ψ−1
i+1(ξ)<ψ

−1
i (ξ)}dξ.
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Then, by using again the ODE (5.15) satisfied by ψi+1 together with the expression of

γi+1(ψi+1, .) from Lemma 7.1, we get:

∫

ϕλ′′i =

∫

ϕ
(

ψi(m)
)

m− ψi(m)
1{ψi(m)<ψi+1(m)}dm−

∫

ϕ
(

ψi+1(m)
)

m− ψi+1(m)
1{ψi(m)<ψi+1(m)=ψi+1(m)}dξ

+

∫

ϕ(ξ)
[

∂xxv
λ
i+1

(

ξ, ψ−1
i (ξ)

)

− ∂xxv
λ
i+1

(

ξ, ψ−1
i+1(ξ)

)]

1{ψ−1
i+1(ξ)<ψ

−1
i (ξ)}dξ,

which we recognize to be the required equality (7.3) for k = i + 1.

2. We next assume that (7.3) holds for some k < n−1, and verify it for k+1. For simplicity,

we denote ψ−1
i+1,j := ψ−1

i+1 ∨ · · · ∨ ψ−1
j . By (7.4), we compute that:

A :=

∫

ϕ(ξ)
[

∂xxvk
(

ξ, ψ−1
i (ξ)

)

− ∂xxvk
(

ξ, ψ−1
i+1,k(ξ)

)

]

1{ψ−1
i (ξ)>ψ−1

i+1,k(ξ)}
dξ

=

∫

ϕ(ξ)1{ψ−1
i (ξ)>ψ−1

i+1,k(ξ)}

[

{

∂xxvk+1

(

ξ, ψ−1
i (ξ)

)

− λ′′k+1(ξ)
}

1{ψ−1
k+1(ξ)<ψ

−1
i (ξ)}

−
{

∂xxvk+1

(

ξ, ψ−1
i+1,k(ξ)

)

− λ′′k+1(ξ)
}

1{ψ−1
k+1(ξ)<ψ

−1
i+1,k(ξ)}

]

dξ

=

∫

ϕ(ξ)1{ψ−1
i (ξ)>ψ−1

i+1,k(ξ)}

[

1{ψ−1
i+1,k(ξ)<ψ

−1
k+1(ξ)<ψ

−1
i (ξ)}∂xxv

λ
k+1

(

ξ, ψ−1
i (ξ)

)

+1{ψ−1
k+1(ξ)<ψ

−1
i+1,k(ξ)}

{

∂xxvk+1

(

ξ, ψ−1
i (ξ)

)

− ∂xxvk+1

(

ξ, ψ−1
i+1,k(ξ)

)}

]

dξ

=

∫

ϕ(ξ)1{ψ−1
i (ξ)>ψ−1

i+1,k(ξ)}

[

1{ψ−1
i+1,k(ξ)<ψ

−1
k+1(ξ)<ψ

−1
i (ξ)}∂xxv

λ
k+1

(

ξ, ψ−1
k+1(ξ)

)

+1{ψ−1
i+1,k(ξ)<ψ

−1
k+1(ξ)<ψ

−1
i (ξ)}

{

∂xxv
λ
k+1

(

ξ, ψ−1
i (ξ)

)

− ∂xxv
λ
k+1

(

ξ, ψ−1
k+1(ξ)

)}

+1{ψ−1
k+1(ξ)<ψ

−1
i+1,k(ξ)}

{

∂xxvk+1

(

ξ, ψ−1
i (ξ)

)

− ∂xxvk+1

(

ξ, ψ−1
i+1,k(ξ)

)}

]

dξ

Putting together the two last terms, we see that:

A =

∫

ϕ(ξ)1{ψ−1
i (ξ)>ψ−1

i+1,k(ξ)}

[

1{ψ−1
i+1,k(ξ)<ψ

−1
k+1(ξ)<ψ

−1
i (ξ)}∂xxv

λ
k+1

(

ξ, ψ−1
k+1(ξ)

)

+1{ψ−1
k+1(ξ)<ψ

−1
i (ξ)}

{

∂xxv
λ
k+1

(

ξ, ψ−1
i (ξ)

)

− ∂xxv
λ
k+1

(

ξ, ψ−1
i+1,k+1(ξ)

)}

]

dξ

Finally, using the ODE (5.15) satisfied by ψk+1 in the first term, together with the expression

of γk+1(ψk+1, .) from Lemma 7.1, we see that

A = −

∫

ϕ
(

ψk+1(m)
) ϕ
(

ψk+1(m)
)

ψk+1(m) −m
1{ψi(m)<ψk+1(m)=ψk+1(m)}dm

+

∫

ϕ(ξ)
[

∂xxv
λ
k+2

(

ξ, ψ−1
i (ξ)

)

− ∂xxv
λ
k+2

(

ξ, ψ−1
i+1,k+2(ξ)

)]

1{ψ−1
i

(ξ)>ψ−1
i+1,k+1(ξ)}

dξ,

which is precisely the required expression in order to justify that (7.3) holds for k + 1. 2
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Proof of Lemma 5.3 (ii) By an induction argument on the line of the previous proof of

item (i), we see that:

∫ X0

ψi(X0)

c0∂xxvi(., X0) =−
k
∑

j=i+1

∫ X0

0

c0
(

ψj(m)
)

m− ψj(m)
1{ψi(X0)<ψj(m)=ψi+1(m)}φ

′(m)dm

+

∫

c0(ξ)1{ψ−1
i+1,k(ξ)<X0<ψ

−1
i (ξ)}

[

∂xxvk(ξ,X0) − ∂xxvk(ξ, ψ
−1
i+1,k(ξ))

]

,(7.5)

where we denoted, as in the previous proof, ψ−1
j,k := ψ−1

j ∨ · · · ∨ ψ−1
k for j ≤ k. The required

result follows by taking k = n in (7.5). 2
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