Accelerating 3D Cellular automata computation with GP-GPU in the context of integrative biology - Archive ouverte HAL
Chapitre D'ouvrage Année : 2011

Accelerating 3D Cellular automata computation with GP-GPU in the context of integrative biology

Résumé

In this paper we explore the possibility of using GP GPU technology (General Purpose Graphical Processing Unit) in the context of integrative biology. For more than a decade, 3D cellular automata represent a promising approach to handling multi-scale modeling of organs. However, the computing time of such huge automata has limited the experiments. Current GP GPUs now allow the execution of hundreds of threads with a regular PC hosting a device card. This capability can be exploited in the case of cellular automata where each cell has to compute the same algorithm. We have implemented two algorithms to compare different memory usage. The performances show very significant speedup even when compared to the latest CPU processors. The interconnection of GP GPU boards and servers will be considered to build a local grid of hybrid machines.
Fichier principal
Vignette du fichier
RR-10-10.pdf (466.27 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00679045 , version 1 (14-03-2012)

Identifiants

  • HAL Id : hal-00679045 , version 1

Citer

Jonathan Caux, David R.C. Hill, Pridi Siregar. Accelerating 3D Cellular automata computation with GP-GPU in the context of integrative biology. Cellular Automata - Innovative Modelling for Science and Engineering, InTech, pp.411-426, 2011. ⟨hal-00679045⟩
271 Consultations
266 Téléchargements

Partager

More