Goodness-of-fit test for noisy directional data - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2012

Goodness-of-fit test for noisy directional data

Résumé

We consider spherical data $X_i$ noised by a random rotation $\varepsilon_i\in$ SO(3) so that only the sample $Z_i=\varepsilon_iX_i$, $i=1,\dots, N$ is observed. We define a nonparametric test procedure to distinguish $H_0:$ ''the density $f$ of $X_i$ is the uniform density $f_0$ on the sphere'' and $H_1:$ ''$\|f-f_0\|_2^2\geq \C\psi_N^2$ and $f$ is in a Sobolev space with smoothness $s$''. For a noise density $f_\varepsilon$ with smoothness index $\nu$, we show that an adaptive procedure (i.e. $s$ in not assumed to be known) cannot have a faster rate of separation than $\psi_N^{ad}(s)=(N/\sqrt{\log\log(N)})^{-2s/(2s+2\nu+1)}$ and we provide a procedure which reaches this rate. We also deal with the case of super smooth noise. We illustrate the theory by implementing our test procedure for various kinds of noise on SO(3) and show that it yields promising numerical results.
Fichier principal
Vignette du fichier
Test_Sphere.pdf (999.05 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00677578 , version 1 (08-03-2012)
hal-00677578 , version 2 (15-11-2013)

Identifiants

Citer

Claire Lacour, Thanh Mai Pham Ngoc. Goodness-of-fit test for noisy directional data. 2012. ⟨hal-00677578v1⟩
323 Consultations
386 Téléchargements

Altmetric

Partager

More