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Goodness-of-fit test for noisy directional data

Claire Lacour ∗ Thanh Mai Pham Ngoc †

March 8, 2012

Abstract

We consider spherical data Xi noised by a random rotation εi ∈ SO(3) so that only the
sample Zi = εiXi, i = 1, . . . , N is observed. We define a nonparametric test procedure to
distinguish H0 : ”the density f of Xi is the uniform density f0 on the sphere” and H1 :
”‖f − f0‖22 ≥ Cψ2

N and f is in a Sobolev space with smoothness s”. For a noise density fε
with smoothness index ν, we show that an adaptive procedure (i.e. s in not assumed to be
known) cannot have a faster rate of separation than ψadN (s) = (N/

√
log log(N))−2s/(2s+2ν+1)

and we provide a procedure which reaches this rate. We also deal with the case of super
smooth noise. We illustrate the theory by implementing our test procedure for various kinds
of noise on SO(3) and show that it yields promising numerical results.

Keywords : Adaptive testing, spherical deconvolution, minimax hypothesis testing, nonpara-
metric alternatives, spherical harmonics.
MSC 2010. Primary 62G10, secondary 62H11.

1 Introduction

We consider the spherical convolution model. We observe:

Zi = εiXi, i = 1, . . . , N (1)

where the εi are i.i.d. random variables of SO(3) the rotation group in R3 and the Xi’s are i.i.d.
random variables of S2, the unit sphere of R3. We suppose that Xi and εi are independent.
We also assume that the distributions of Zi and Xi are absolutely continuous with respect to
the uniform measure on S2 and we set fZ and f the densities of Zi and Xi respectively. The
distribution of εi is absolutely continuous with respect to the Haar measure on SO(3) and we
will denote it fε. Then we have

fZ = fε ∗ f,

where ∗ denotes the convolution product which is defined below in (5).
Roughly speaking, the density spherical convolution model provides a setup where each gen-

uine observation Xi is contaminated by a small random rotation. The aim of the present paper
is to provide nonparametric adaptive minimax goodness-of-fit testing procedures on f from the
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noisy observations Zi. More precisely, let f0 being the uniform density on S2, we consider the
problem of testing the null hypothesis f = f0 with alternatives expressed in L2 norm over Sobolev
classes.

To the best of our knowledge, goodness-of-fit testing in spherical convolution model does not
exist. Our results are strongly motivated by astrophysical interests. In astrophysics, a burning
issue consists in understanding the behaviour of the so-called Ultra High Energy Cosmic Rays
(UHECR). These latter are cosmic rays with an extreme kinetic energy (of the order of 1019 eV)
and the rarest particles in the universe. The source of those most energetic particles remains
a mystery and the stake lies in finding out their origins and which process produces them.
Astrophysicists have at their disposal directional data which are measurements of the incoming
directions of the UHECR on Earth.

Needless to say that finding out more about the law of probability of those incoming directions
is crucial to gain an insight into the mechanisms generating the UHECR. Several hypotheses are
made. A uniform density would suggest that the High Energy Cosmic Rays are generated by
cosmological effects, such as the decay of relic particles from the Big Bang. On the contrary,
if these UHECR are generated by astrophysical phenomena (such as acceleration into Active
Galactic Nuclei (AGN)), then we should observe a density function which is highly non-uniform
and tightly correlated with the the local distribution of extragalactic supermassive black holes
at the center of nearby galaxies (AGN). First results seemed to favour a non-uniform density
but as underlined by Faÿ et al. (2011), a more recent analysis based on 69 observations of
UHECR softens this conclusion of anisotropy. To this prospect, these relevant considerations
lead naturally to goodness-of-fit testing on the uniform density.

Faÿ et al. (2011) recently developed isotropy goodness-of-fit tests based on the so-called
needlets for the direct case. Their study is focused on the practical aspect with simulations
connected to realistic cosmic rays scenari. In our work, we consider the indirect case in which
some noise occurs. Indeed, the observations of the events Xi are always most often perturbated
by a secondary noise (εi) which leads to the convolution statistical model (1). Here, we put
the emphasis on theoretical statements and completed them with promising simulations. In
particular, we consider complex noise distributions on SO(3) such as the Gaussian and the
Laplace ones which have never been implemented so far.

Considering goodness-of-fit testing in the spherical convolution model not only finds its in-
terest in the above important applications, but it also fills a gap both in the noisy setup testing
literature and the spherical convolution one. Indeed, convolution models have been extensively
studied on the real line and more recently on the sphere. However, so far, only estimation has
been treated in the spherical setup. For estimation problem, one is interested in recovering the
underlying density f from noisy observations Zi. The pioneer works of Healy et al. (1998), Kim
and Koo (2002), Kim et al. (2004) introduced a minimax estimation procedure based on the
Fourier basis of L2(S2). Recently, Kerkyacharian et al. (2011) proposed an optimal and adaptive
hard thresholding estimation procedure based on needlets.

Nonparametric goodness-of-fit testing has aroused a lot of interest. For minimax testing, we
refer to the work of Ingster (1993) who settled down the theoretical basements. Spokoiny (1996)
first established adaptive testing procedure based on wavelets over Besov bodies. Nonetheless,
goodness-of-fit testing has mainly focused on the case of direct observations. Indeed, very few
works have been devoted to the case of indirect observations and if so, only on R. On this point,
let us cite the pioneer works of Butucea (2007) who built minimax nonparametric goodness-of-fit
testing for convolution models based on kernels methods, of Butucea et al. (2009) which made a
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step forward by building an adaptive testing procedure in the noisy setup.
We would also like to bring to the reader’s attention some interesting fact when encountering

testing problems with indirect observations. Indeed, there is a natural pas de deux between the
following approaches : to test f = f0 or to test fε ∗ f = fε ∗ f0. This question has been the
object of the recent work of Laurent et al. (2011) and has been previously evoked by Butucea
et al. (2009). In the case of the convolution model on the real line, Laurent, Loubes and Marteau
prove that if a test procedure is minimax for testing problem : HD

0 : fε ∗ f = fε ∗ f0 versus
HD

1 : fε ∗ (f − f0) ∈ FD where

FD = {g with smoothness s′ and ‖g‖2 ≥ C ′n−4s′/(4s′+1), with s′ = s+ ν},

then it is minimax for HI
0 : f = f0 versus HI

1 : f − f0 ∈ FI where

FI = {f with smoothness s and ‖f‖2 ≥ Cn−4s/(4s+4ν+1)}

but the reverse is not true (here n is the number of data and ν the smoothness index of the
noise). This interesting conclusion (that we can conjecture true in our context also) does not
make it any the less necessary to study the inverse problem here. Indeed, until the present work,
the minimax rates was not known in the context of noisy spherical data. Moreover, when dealing
with adaptive procedures, the link between the direct and inverse problems is not established
yet.

In the present paper, the whole difficulty actually lies in the spherical geometry which com-
plicates every steps that one encounters on R. Indeed, the efficient test statistic of Butucea
(2007) was built upon a deconvolution kernel estimator of the quadratic functional

∫
(f−f0)2. It

is well-known that such an estimator is closely linked to the Fourier transform on R. There exist
kernel methods to treat density estimation for spherical data but only for direct observations
(see Hall et al. (1987), and Bai et al. (1988)). Here in the spherical convolution context, Fourier
analysis has a different behaviour and we resort to existing procedures to estimate the quadratic
risk

∫
(f − f0)2. Those procedures (see Kim and Koo (2002)) are based on Fourier series which

come down to projections. Consequently, the approach proves to be quite different than the one
on the real line. The difficulty of testing in a spherical deconvolution model can be seen in the
following way. If you use an orthogonal basis (ψk) to estimate the unknown function f , then
using U-statistics requires that the “deconvoluted“ basis φk (s.t. ψk = fε ∗ φk) is also (almost)
orthogonal, which is delicate to realize. Thus one has to circumvent new problems linked to
estimation of the quadratic functional, Fourier series, spherical context and convolution model
setting. This explains why we choose to use spherical harmonics and their good properties in
term of orthogonality.

The plan of the paper is as follows. In Section 2, we give a brief overview about harmonic
analysis on SO(3) and S2 which will be necessary throughout the paper. In Section 3 we define
the test hypotheses and the smoothness assumptions about the unknown density f and the noise
εi. We also introduce the adaptive goodness-of-fit testing procedure. In Sections 4 and 5 we
compute lower and upper bounds for testing rates for the ordinary smooth noise case. The super
smooth noise case is treated in Section 6. Finally, we give a simulation study in Section 7. The
proofs of the results are detailed in Section 8.
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2 Some preliminaries about harmonic analysis on SO(3) and S2

We will provide a brief overview of Fourier analysis on SO(3) and S2. Most of the material can be
found in expanded form in Vilenkin (1968), Talman (1968), Terras (1985), Kim and Koo (2002)
and Healy et al. (1998).

Let Dl
mn for −l ≤ m, n ≤ l, l = 0, 1, . . . be the eigenfunctions of the Laplace Beltrami

operator on SO(3), hence,
√

2l + 1Dl
mn, −l ≤ m, n ≤ l, l = 0, 1, . . . is a complete orthonormal

basis for L2(SO(3)) with respect to the probability Haar measure. Explicit formulae of the
rotational harmonics Dl

mn in term of Euler angles exist but we do not need it here. Next, for
f ∈ L2(SO(3)), we define the rotational Fourier transform on SO(3) by the (2l + 1) × (2l + 1)
matrices f?l with entries

f?lmn =

∫
SO(3)

f(g)Dl
mn(g)dg,

where dg is the probability Haar measure on SO(3). The rotational inversion can be obtained by

f(g) =
∑
l

∑
−l≤m, n≤l

f?lmn(2l + 1)Dl
mn(g). (2)

(2) is to be understood in L2-sense although with additional smoothness conditions, it can hold
pointwise.

A parallel spherical Fourier analysis is available on S2. Any point on S2 can be represented
by

ω = (cosφ sin θ, sinφ sin θ, cos θ)t,

with φ ∈ [0, 2π), θ ∈ [0, π). We also define the functions:

Y l
m(ω) = Y l

m(θ, φ) =

√
(2l + 1)

4π

(l −m)!

(l +m)!
P lm(cos θ)eimφ,

for −l ≤ m ≤ l, l = 0, 1, . . ., φ ∈ [0, 2π), θ ∈ [0, π) and where P lm are the associated Legendre
functions. The functions Y l

m obey

Y l
−m(θ, φ) = (−1)mY l

m(θ, φ). (3)

Let L2(S2) denote the space of square integrable functions on S2, that is, the set of measurable
functions f on S2 for which

‖f‖2 =

(∫
S2
|f(x)|2dx

) 1
2

<∞,

where dx is the Lebesgue measure on the sphere S2. It is well-known that L2(S2) is a Hilbert
space with the inner product

〈f, g〉L2 =

∫
S2
f(x)g(x)dx, f, g ∈ L2(S2).

The set {Y l
m, −l ≤ m ≤ l, l = 0, 1, . . .} is forming an orthonormal basis of L2(S2), generally

referred to as the spherical harmonic basis. Again, as above, for f ∈ L2(S2), we define the
spherical Fourier transform on S2 by
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f?lm =

∫
S2
f(x)Y l

m(x)dx. (4)

We think of (4) as the vector entries of the (2l + 1) vector

f?l = [f?lm ]−l≤m≤l, l = 0, 1, . . .

The spherical inversion can be obtained by

f(ω) =
∑
l

∑
−l≤m≤l

f?lmY
l
m(ω).

The bases detailed above are important because they realize a singular value decomposition of the
convolution operator created by our model. In effect, we define for fε ∈ L2(SO(3)), f ∈ L2(S2)
the convolution by the following formula:

fε ∗ f(ω) =

∫
SO(3)

fε(u)f(u−1ω)du (5)

and we have for all −l ≤ m ≤ l, l = 0, 1, . . .,

(fε ∗ f)?lm =
l∑

n=−l
f?lε,mnf

?l
n = (f?lε f

?l)m. (6)

We shall recall some basic facts which will be useful throughout the paper. Let Hl the vector
space spanned by {Y l

m = −l ≤ m ≤ l} for each l = 0, 1, . . . . Any element h ∈ Hl can be
written as h =

∑l
m=−l h

?l
mY

l
m and thanks to Parseval equality we have ‖h‖22 =

∑l
m=−l |h?lm|2.

Now according to (6) we have

f?lε : Hl → Hl defined by f?lε h =
l∑

m=−l

(
l∑

n=−l
(f?lε )mnh

?l
n

)
Y l
m.

We finally get the operator inequality

‖f?lε h‖2 ≤ ‖f?lε ‖op‖h‖2, where ‖f?lε ‖op = sup
h6=0,h∈Hl

‖f?lε h‖2
‖h‖2

.

3 Model and assumptions

We would like to present our results in terms of Sobolev classes (see e.g. Healy et al. (1998) for a
definition on the sphere). On the space C∞(S2) of infinitely continuous differentiable functions
on S2, consider the so-called Sobolev norm ‖‖Ws of order s defined in the following way. For any
function f =

∑
lm f

?l
mY

l
m let

‖f‖2Ws
=
∑
l≥0

l∑
m=−l

(1 + l(l + 1))s|f?lm |2. (7)
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We denote by Ws(S2) the vector space completion of C∞(S2) with respect to the Sobolev norm
(7) of order s. For some fixed constant R > 0, let Ws(S2, R) denote the smoothness class of
functions f ∈Ws(S2) which satisfy

‖f‖Ws ≤ R. (8)

For the uniform density of probability on the sphere namely f0 = (4π)−1
1S2 , we want to test

the hypothesis
H0 : f = f0,

from observations Z1, . . . , ZN given by model (1). We consider the alternative

H1(s,R, CψN ) : f ∈Ws(S2, R) and ‖f − f0‖22 ≥ CψN

where C is a constant and ψN is the testing rate.
We will say that the distribution of ε is ordinary smooth of order ν if the rotational Fourier

transform of fε satisfies the following assumption.

Assumption 1. For all l ≥ 0, the matrix f?lε is invertible and there exist positive constants
d0, d1, ν such that

‖f?lε−1‖op ≤ d−1
0 lν and ‖f?lε ‖op ≤ d1l

−ν ,

where we have denoted the matrix (f?lε )−1 by f?lε−1 .

Recall that we assume that fε is known, consequently d0 and ν are also considered known.
Some examples satisfying this assumption are given in Section 7.

In order to build a test statistic, as usual, we first have to construct an unbiased estimator of
the quadratic functional

∫
S2(f − f0)2 = ‖f − f0‖22. To do so, we remark that thanks to Parseval

equality: ∫
S2

(f − f0)2 =
∑
l≥0

l∑
m=−l

|f?lm − f0
?l
m|2 =

∑
l≥1

l∑
m=−l

|f?lm |2,

the last equality coming from the fact that (f0)?lm 6= 0 only for (l,m) = (0, 0). Since f?l = f?lε−1f
?l
Z

for l = 0, 1, . . . , we can write under Assumption 1

f?lm =
l∑

n=−l
(f?lε−1)mn(f?lZ )n.

A natural estimator of f?lm is given by

f̂?lm =
1

N

N∑
i=1

l∑
n=−l

(f?lε−1)mnY l
n(Zi).

If we denote by Φlm(x) =
∑l

n=−l(f
?l
ε−1)mnY l

n(x) then

f̂?lm =
1

N

N∑
i=1

Φlm(Zi).
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Consequently, we can derive an unbiased estimator Tlm of |f?lm |2

Tlm =
2

N(N − 1)

∑
i1<i2

Φlm(Zi1)Φlm(Zi2),

and finally an estimator of ‖f − f0‖22

TL =
L∑
l=1

l∑
m=−l

2

N(N − 1)

∑
i1<i2

Φlm(Zi1)Φlm(Zi2).

We can now define a test procedure

∆ =

{
1 if |TL| > t2

0 otherwise

for a threshold t2 to be suitably chosen. The choice of L is crucial too, ans this point will be
solved in Sections 5 & 6.

As one may have noticed, the noise smoothness hypothesis and hence the test procedure only
rely on the Fourier transform of the noise density fε. Consequently, we do not need the existence
of the density fε but only its Fourier transform.

4 Lower bound for testing rate

It is known that the rate of separation in the case of direct observations in dimension two is
N−4s/4s+2. Let us see how it is modified by the presence of a noise with smoothness ν.

Theorem 1. Assume that R > 1/
√

2π. Let s ≥ 1 and ψN = N−2s/(2s+2ν+1). Let η ∈ (0, 1). If
C ≤ KR2 where K is a constant only depending on d0, d1, ν, s, η, then

lim inf
N→∞

inf
∆N

{
Pf0(∆N = 1) + sup

f∈H1(s,R,CψN )
Pf (∆N = 0)

}
≥ η

where the infimum is taken over all test procedures ∆N based on the observations Z1, . . . , ZN .

This means that testing with a faster rate than ψN = N−2s/(2s+2ν+1) is impossible. If the
distance beetween f0 and the alternative is smaller than ψN = N−2s/(2s+2ν+1), the sum of the
error of the two kinds is close to 1. Nevertheless, it requires the knowledge of the smoothness
index s. That is why we want to build on a so-called adaptive test procedure which does not
depend on s. But we prove in the next statement that we have to face a phenomenon of “lack
of adaptability” for our problem, i.e. it is not possible to test adaptively with the same rate.
Indeed, in the context where s is unknown and belongs to some set S, there is not any universal
test with small error for each s ∈ S. The price to pay for adaptivity is an extra factor

√
log logN

in the separation rate.
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Theorem 2. Assume that R > 1/
√

2π. For all s ≥ 1, let ψadN (s) = (N/
√

log log(N))−2s/(2s+2ν+1).
Let η ∈ (0, 1). If C ≤ KR2 where K is a constant only depending on d0, d1, ν, s, η, then, if S is
a set containing an interval,

lim inf
N→∞

inf
∆N

{
Pf0(∆N = 1) + sup

s∈S
sup

f∈H1(s,R,CψadN (s))

Pf (∆N = 0)

}
≥ η

where the infimum is taken over all test procedures ∆N based on the observations Z1, . . . , ZN .
Moreover any rate faster than ψadN will also lead to a lower-bounded error.

5 Upper bound for testing rate

In order to construct an adaptive procedure of testing, we shall use the following exponential
inequality.

Lemma 1. There exists K0,K1 such that, for all sequence uN ,

P0(|TL| > L2ν+1uN/N) ≤ K1 exp(−K0u
2
N )

provided that uNL−1, LN−2u8
N and LN−1u3

N are bounded.

Actually the term L2ν+1/N is the order of the variance of TL under H0. We denote dxe the
smallest integer larger than or equal to x.

Theorem 3. Assume s ≥ 1 and ψN = (N/
√

log logN)−2s/(2s+2ν+1). We consider the set L =
{2j0 , . . . , 2jm} where j0 = dlog2(log logN)e, jm = dlog2(N(log logN)−3/2)e and the adaptive test
statistic

DN = 1{maxL∈L(|TL|/t2L)>
√

2/K0}

with t2L = L2ν+1
√

log logN/N. Let 0 < η < 1. Then, if C >
√

2K−1
0 +R2,

lim sup
N→∞

{
Pf0(DN = 1) + sup

f∈H1(s,R,CψN )
Pf (DN = 0)

}
≤ η.

Note that the direct case (without noise) is included in this result, taking ε = Id, f?lε = Id,
ν = 0. In this case, the separation rate is (N/

√
log logN)−2s/(2s+1). To our knowledge, even in

this simpler case, this result was not established yet.

6 Super smooth noise

In this section, we deal with the case of a super smooth noise. This kind of noise is of interest
since it includes the Gaussian distribution. We will say that the distribution of ε is super smooth
of order ν if the rotational Fourier transform of fε satisfies

Assumption 2. For all l ≥ 0, the matrix f?lε is invertible and there exist reals ν1 ≤ ν0, and
positive constants d0, d1, δ, β such that

‖f?lε−1‖op ≤ d−1
0 l−ν0 exp(lβ/δ) and ‖f?lε ‖op ≤ d1l

ν1 exp(−lβ/δ).
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In this case, we present a similar test statistic but with a different threshold tL. Moreover it
is sufficient to consider only one L∗ instead of a maximum.

Theorem 4. Let ψN = (logN)−2s/β and K0 > 0. We consider L∗ =
⌊
(δ log(N)/8)1/β

⌋
and the

test statistic
DN = 1{|TL∗ |/t2L∗>K0}

with t2L = L−2ν0+1 exp(2Lβ/δ)/N. Let 0 < η < 1. Then, if C > K0 +R2(δ/16)−2s/β,

lim sup
N→∞

{
Pf0(DN = 1) + sup

f∈H1(s,R,Cψn)
Pf (DN = 0)

}
≤ η.

We observe that in this case the separation rate is very slow ψN = (logN)−2s/β . However,
this rate is reached without any knowledge on the smoothness of f . Moreover, we prove that
this is the optimal rate:

Theorem 5. Assume that R > 1/
√

2π. Let s ≥ 1/2 and ψN = (logN)−2s/β. Let η ∈ (0, 1). If
C ≤ KR2 where K is a constant only depending on d0, d1, ν0, β, δ, s, η, then

lim inf
N→∞

inf
∆N

{
Pf0(∆N = 1) + sup

f∈H1(s,R,CψN (s))
Pf (∆N = 0)

}
≥ η

where the infimum is taken over all test procedures ∆N based on the observations Z1, . . . , ZN .

The deterioration of the rate in the case of a super smooth noise is a well-known phenomenon
in convolution models (see e.g. Fan (1991)).

7 Simulations

In this section we implement our test procedure for two kinds of noise. First we will present the
noises on SO(3) we consider, then we explain the protocol we are going to follow and eventually
we give the performances of our goodness-of-fit test in term of power.

In our theoretical statements, we talked about ordinary and super smooth noises on the group
SO(3), but what does it mean in practice? Does it exist concrete examples of random matrices
which could be generated according to densities which meet those smoothness assumptions? The
answer is yes. We will particularly highlight two cases, the Rotational Laplace and the Gaussian
densities on SO(3) (for further details see Kim and Koo (2002)). To the best of our knowledge,
they have never been implemented in practice. The first one is an ordinary smooth density and
the second one a super smooth one.

As explained in section 3, the noise smoothness can be characterized by the decay of its
rotational Fourier transform. The Rotational Laplace distribution is the rotational analogue of
the well-known Euclidean Laplace distribution (known also as double exponential distribution).
It has been discussed in depth in Healy et al. (1998). Its expanded form in term of rotational
harmonics is the following

fε =
∑
l≥0

l∑
m=−l

(1 + σ2l(l + 1))−1(2l + 1)Dl
mm, (9)

9



for some σ2 > 0 which is a variance parameter. Hence we have

f?lε,mn = (1 + σ2l(l + 1))−1δmn,

for l = 0, 1, . . . and where δmn = 1 if m = n and is 0 otherwise. The Laplace distribution is
ordinary smooth with a smoothness index ν = 2.

Let us present now the Gaussian distribution. The distribution can be written as follows (see
Kim and Koo (2002))

fε =
∑
l≥0

l∑
m=−l

exp(−σ2l(l + 1)/2)(2l + 1)Dl
mm, (10)

for σ > 0. We have
f?lε,mn = exp(−σ2l(l + 1)/2)δmn.

This is an example of a super smooth distribution with δ = 2/σ2 and β = 2 following the
terminology in Section 6.

Here is our testing procedure steps.

1. Under H0 generate N observations uniformly.

2. With these N uniform observations, compute by 1000 Monte Carlo runs the 10% quantile
of the statistics maxL∈L(|TL|/t2L) defined in Theorem 3. We will denote it q10.

At this stage it is possible to apply the test to any noised data. Here we study the performance
of the test with the following next steps.

3. Generate N random rotation matrices following the Laplace or the Gaussian distribution
and apply them to N observations generated according to the alternative density g in H1

(see Figure 1).

4. Compute the test power given by Pg(maxL∈L(|TL|/t2L) > q10) by 200 Monte Carlo runs.

We point out that the numerical procedure is notably fast all the more so as we are in di-
mension 2.

The alternative density g is represented in spherical coordinates on Figure 1. It has two
modes, one very sharp and the other one oblate.

For more clarity about how the noise matrices are involved in the problem, we represent 500
observations generated under the alternative density g with and without noise, see Figure 2. To
plot the figure, we consider the Laplace distribution noise with a variance parameter σ2 = 0.5.
It turned out that applying random rotations tends to spread uniformly the observations which
makes the separation between the null and the alternative hypothesis a difficult task.

We would also like to make a remark about how to generate random matrices according to
the Laplace or the Gaussian distribution. After rewriting carefully their density expressions in
terms of rotational harmonics given by (9) and (10), it turned out that fε(u) only depends on
the angle of the rotation u, say θ. Then the simulation of a rotation following fε amounts to
pick at random an axis and perform a rotation about this axis by an angle following the law
fε(θ)(1− cos(θ))/π.
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Figure 1: The alternative density

Figure 2: Observations under H1 without and with noise

For more conciseness, we do not present the empirical level of the test which is whatever
the noise, the number of observations, between 6% and 12%. Indeed, the procedure is devised
in such a way that we have a level around 10%. Let us focus now on the test power which is
more informative. We computed it for several number of observations going from 50 only to
500 and give our results in Table 1. We point out that we deliberately considered the cases of
very few observations such as 50 and 100 because these scenari are realistic in astrophysics when
collecting UHECR observations. Our test procedure performs pretty well with excellent results
if we have 500 observations. For reasonable values of the variance parameters such as 0.1, the
procedure yields reasonable results even for 50 or 100 observations only.
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Table 1: Test Power

Noise distribution N = 50 N = 100 N = 250 N = 500

Laplace, σ2 = 0.1 0.59 0.93 1 1
σ2 = 0.25 0.37 0.68 0.99 1
σ2 = 0.5 0.20 0.30 0.63 0.96

Gaussian, σ2 = 0.1 0.42 0.81 0.99 1
σ2 = 0.25 0.30 0.35 0.77 0.98
σ2 = 0.5 0.16 0.33 0.50 0.83

8 Proofs

8.1 Proof of Theorem 1

As usual in the proofs of lower bounds, we build a set of functions quite far from f0 in term of L2

norm, but whose distance between the resulting models is small. More precisely, let γ = γ(N)
and L = L(N), respectively a scale factor and a resolution level to be specified later. For all
l < L and m ∈ {−l, . . . , l}, we define ϕlm the function such that

fε ∗ ϕlm = Y l
m.

Here Y l
m denotes the real form of the spherical harmonic, that we denote as the complex form

for the sake of simplicity. Using the real form ensures that ϕlm is real. The existence of such
a function is ensured by the assumption of invertibility of matrices f?lε and we can write ϕlm =∑l

n=−l(f
?l
ε−1)nmY

l
n. Now, for θlm, l < L, m ∈ {−l, . . . , l}, independent random variables with

distribution P(θlm = ±γ) = 1/2, we introduce

fθ = f0 +

L−1∑
l=L/2

l∑
m=−l

θlmϕlm.

In the sequel we show that, for good choices of γ and L,

• fθ belongs to Ws(S2, R),

• fθ is a density function,

• ‖fθ − f0‖2 ≥ CψN ,

• χ2(Pθ, Pf0) ≤ (1− η)2 for N large enough.

Then, if T is the maximum likelihood test which is equal to 1 if
∏N
i=1 fθ(Xi)/f0(Xi) ≥ 1 and 0

otherwise,

Pf0(T = 1) + Pθ(T = 0) ≥
∫

min(dPθ, dPf0) ≥ 1−
√
χ2(dPθ, dPf0) ≥ 1− (1− η) (11)

using section 2.4.1 in Tsybakov (2009). Thus, for N large enough,

Pf0(T = 1) + sup
f∈H1(s,R,CψN )

Pf (T = 0) ≥ η

12



and the result is proved.

•Belonging to the Sobolev space:
We compute

∑
ln

(1 + l(l + 1))s| < fθ, Y
l
n > |2 = | < fθ, Y

0
0 > |2 +

L−1∑
l=L/2

∑
n

(1 + l(l + 1))s| < fθ, Y
l
n > |2

≤ | < f0, Y
0

0 > |2 +
L−1∑
l=L/2

(1 + l(l + 1))s
∑
n

|
l∑

m=−l
θlm(f?lε−1)nm|2

≤ 1

4π
+

L−1∑
l=L/2

(1 + l(l + 1))s‖f?lε−1‖2op
l∑

m=−l
|θlm|2

≤ 1

4π
+ d−2

0 γ2
L−1∑
l=L/2

(1 + l(l + 1))sl2ν(2l + 1)

≤ R2

2
+ C1(d0, s, ν)γ2L2s+2ν+2.

Hence, belonging to the Sobolev ball imposes that

γ2L2(s+ν+1) ≤ R2

2C1(d0, s, ν)
.

Then it is sufficient to choose γ2 = c1L
−2(ν+s+1) with c1 ≤ R2/(2C1(d0, s, ν)).

•Density:
Since, for l > 0,

1√
4π

∫
ϕlm = (ϕlm)?00 = 0

we obtain
∫
fθ = 1. Let us now show that fθ ≥ 0. We first use the Cauchy-Schwarz inequality

|fθ(x)− f0(x)|2 ≤
L−1∑
l=L/2

∑
n

|〈fθ − f0, Y
l
n〉|2

L−1∑
l=L/2

∑
n

|Y l
n(x)|2

Next, since spherical harmonics have the property
∑

n |Y l
n|2 ≤ (2l + 1)/(4π),

|fθ(x)− f0(x)|2 ≤
L−1∑
l=L/2

∑
n

∣∣∣∣∣
l∑

m=−l
θlm(f?lε−1)nm

∣∣∣∣∣
2 L−1∑
l=L/2

2l + 1

4π

≤ 3

8π

L−1∑
l=L/2

‖f?lε−1‖2op
l∑

m=−l
|θlm|2L2

≤ 9d−2
0

8π
γ2

L−1∑
l=L/2

l2ν+1L2 ≤ C2
2γ

2L2ν+4

13



with C2
2 = 9d−2

0 /(8π(2ν + 2)). Thus, replacing γ by its value,

fθ ≥ f0 − ‖fθ − f0‖∞ ≥
1

4π
− C2γL

ν+2 ≥ 1

4π
− C2

√
c1L

1−s.

Now, since s ≥ 1, fθ is a density as soon as

1

4π
− C2

√
c1 ≥ 0⇔ c1 ≤

ν + 1

9πd−2
0

.

•Separation rate:
We denote pθ = fε ∗ fθ = f0 +

∑L−1
l=L/2

∑
m θlmY

l
m. Then

‖pθ − f0‖2 = ‖fε ∗ (fθ − f0)‖2 =
L−1∑
l=L/2

l∑
m=−l

|(f?lε (fθ − f0)?l)m|2

≤
L−1∑
l=L/2

‖f?lε ‖2op
l∑

m=−l
|(fθ − f0)?lm|2 ≤ d2

1(L/2)−2ν‖fθ − f0‖2.

Moreover

‖pθ − f0‖2 =
L−1∑
l=L/2

∑
m

|θlm|2 = γ2
L−1∑
l=L/2

(2l + 1) ≥ Cγ2L2.

Finally ‖fθ − f0‖2 ≥ C3(d1, ν)γ2L2ν+2 = C3(d1, ν)c1L
−2s. Now we choose

L =
⌊
N1/(2s+2ν+1

⌋
where bxc denotes the largest integer which is smaller than or equal to x. Thus ‖fθ − f0‖2 ≥
C3(d1, ν)c1ψN ≥ CψN as soon as C ≤ C3(d1, ν)c1.

•Chi-square divergence:
We denote µ the measure defined by dµ(θ) =

∏
lm(δ1 + δ−1)/2. We want to show that

Ef0

((
dPµ
dPf0

− 1

)2
)
≤ (1− η)2

where
dPµ
dPf0

=

∫ N∏
i=1

pθ(Zi)

p0(Zi)
µ(dθ) = Eµ

N∏
i=1

4πpθ(Zi).

First, note that Ef0(4πpθ(Z1)) = 1 +
∑

lm 4πθlm
∫
Y l
m = 1. Then, using Fubini and the indepen-

dence of the Zi, Ef0(
dPµ
dPf0

) = Eµ
∏n
i=1 Ef0(4πpθ(Zi)) = 1. So it is sufficient to prove that

Ef0

((
dPµ
dPf0

)2
)
≤ 1 + (1− η)2.
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Using Fubini,

1

(4π)2N
Ef0

((
dPµ
dPf0

)2
)

= Ef0

(
Eµ×µ

N∏
i=1

pθ(Zi)
N∏
i=1

pθ′(Zi)

)
= Ef0

(
Eµ×µ

N∏
i=1

pθ(Zi)pθ′(Zi)

)

= Eµ×µ

(
Ef0

N∏
i=1

pθ(Zi)pθ′(Zi)

)

where d(µ× µ)((θ, θ′)) = dµ(θ)dµ(θ′). Now, the Zi being independent, we write

Ef0

(
N∏
i=1

pθ(Zi)pθ′(Zi)

)
=

N∏
i=1

Ef0(pθ(Zi)pθ′(Zi)) =

(∫
pθpθ′

1

4π

)N
. (12)

Using the definition of pθ and the orthogonality of the Y l
m, we obtain∫

pθpθ′ =
1

4π
+

L−1∑
l=L/2

l∑
m=−l

θlmθ
′
lm. (13)

Combining (12) and (13), and then inequality 1 + a ≤ ea, gives

Ef0

(
N∏
i=1

pθ(Zi)pθ′(Zi)

)
=

(
1

(4π)2
+

1

4π

∑
lm

θlmθ
′
lm

)N
≤ 1

(4π)2N
exp(N4π

∑
lm

θlmθ
′
lm)

≤ 1

(4π)2N

∏
lm

exp(N4πθlmθ
′
lm)

so that

Ef0

((
dPµ
dPf0

)2
)
≤ Eµ×µ

∏
lm

exp(N4πθlmθ
′
lm).

Using the distribution of (θ, θ′), we obtain

Ef0

((
dPµ
dPf0

)2
)
≤
∏
lm

1

2
exp(Nγ24π) +

1

2
exp(−Nγ24π) ≤

∏
lm

cosh(Nγ24π).

Now, using cosh(2x) = 1 + 2 sinh2(x) and inequality 1 + a ≤ ea,

Ef0

((
dPµ
dPf0

)2
)
≤

∏
lm

(1 + 2 sinh2(Nγ22π)) ≤
∏
lm

exp(2 sinh2(Nγ22π))

≤ exp(2
∑
lm

sinh2(Nγ22π)).

Since Nγ2 → 0 and sinh(x) = x+ o(x), there exists C4 > 0 such that, for N large enough,

sinh2(Nγ22π) ≤ C4N
2γ4.
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Then ∑
lm

sinh2(Nγ22π) ≤ C4N
2γ4

∑
lm

1 ≤ C5N
2γ4L2.

That yields, for N large enough,

Ef0

((
dPµ
dPf0

)2
)
≤ exp(2C5N

2γ4L2) ≤ exp(2C5c
2
1N

2L−4s−4ν−2).

But remember that N2 < (L+1)4s+4ν+2 so that Ef0
((

dPµ
dPf0

)2
)
≤ exp(C6(s, ν)c2

1) ≤ 1+(1−η)2

for a good choice of c1.

8.2 Proof of Theorem 2

We follow the same proof as the one of Theorem 1 but with this time a random L. Let kN =
b(logN)δc. We choose kN elements of S: s1 < · · · < skN such that sj+1 − sj ≥ log(N)−1.
Then it is possible to find J1 > · · · > JkN > 1 such that for all 1 ≤ j ≤ kN , N/

√
log(kN ) =

c22Jj(2ν+2sj+1). We also define γ2
j = c12−2Jj(ν+sj+1). We consider hypothesis functions

fθ = f0 +
∑
L

L−1∑
l=L/2

l∑
m=−l

θLlmϕlm

and we take a prior of the form µ = kN
−1∑kN

j=1 µj . Then θ is randomly chosen such that
µj(θlm = ±γj) = 1/2 if L = 2Jj , 2Jj−1 ≤ l < 2Jj , −l ≤ m ≤ l and µj(θlm = 0) = 1 otherwise.
This means that L is fixed equal to 2Jj with probability 1/kN and random densities with respect
to the measures µj have the following form

fθ = f0 +
L−1∑
l=L/2

l∑
m=−l

θlmϕlm

where µj(θlm = ±γj) = 1/2.
Given the proof of Theorem 1, we easily verify that µj-a.s. fθ ∈ H1(sj , R, CψadN (sj)) if c1

is chosen small enough. Now, since sups∈S supf∈H1(s,R,CψadN (s)) Pf (∆N = 0) ≥ Pµ(∆N = 0) and
according to (11), it is sufficient to bound the χ2-divergence. So we will show that

lim sup
N

Ef0

((
dPµ
dPf0

)2
)
≤ 1 + (1− η)2

which comes back to

lim sup
N

1

k2
N

kN∑
p,q=1

Ef0
(
dPµp
dPf0

dPµq
dPf0

)
≤ 1 + (1− η)2.

Using Fubini’s Theorem and independence of the Zi’s,

Ef0
(
dPµp
dPf0

dPµq
dPf0

)
= Eµp×µq

(
Ef0

N∏
i=1

pθ(Zi)pθ′(Zi)

)
= Eµp×µq

((∫
4πpθpθ′

)N)
.
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Denoting al(L1, L2) = 4π1L1/2≤l<L1
1L2/2≤l<L2

we can write∫
4πpθpθ′ = 1 +

∑
L1,L2

∑
lm

θLlmθ
′
Llmal(L1, L2).

Thus(
4π

∫
pθpθ′

)N
≤ exp

N ∑
L1L2lm

θLlmθ
′
Llmal(L1, L2)

 ≤ ∏
L1L2lm

exp(NθLlmθ
′
Llmal(L1, L2)).

Using the distribution of (θ, θ′), we obtain

Ef0
(
dPµp
dPf0

dPµq
dPf0

)
≤

∏
lm

1

2
exp(Nγpγqal(2

Jp , 2Jq)) +
1

2
exp(−Nγpγqal(2Jp , 2Jq))

≤
∏
lm

cosh(Nγpγqal(2
Jp , 2Jq)).

Now, using cosh(2x) = 1 + 2 sinh2(x), inequality 1 + a ≤ ea and sinh(x) = x+ o(x)

Ef0
(
dPµp
dPf0

dPµq
dPf0

)
≤ exp(2

∑
lm

sinh2(Nγpγqal(2
Jp , 2Jq)/2)) ≤ exp(C1N

2γ2
pγ

2
q

∑
lm

|al(2Jp , 2Jq)|2).

We observe that al(2Jp , 2Jq) = 0 as soon as Jp 6= Jq. That yields

Ef0
(
dPµp
dPf0

dPµq
dPf0

)
≤ exp(C2N

2γ4
p22Jp1p=q).

Then

1

k2
N

kN∑
p,q=1

Ef0
(
dPµp
dPf0

dPµq
dPf0

)
≤ 1

k2
N

kN∑
p=1

exp(C2N
2γ4
p22Jp) ≤ 1

kN
exp(C2c

2
1c

2
2 log(kN )) ≤ kC2c21c

2
2−1

N

which is bounded by 1 + (1− η)2 for N large enough if we choose c1 small enough.

8.3 Proof of Lemma 1

We recall the result from Giné et al. (2000).

Lemma 2. Let u a bounded canonical kernel, completely degenerate of the i.i.d. variables
Z1, . . . , ZN . There exist universal constants K1,K2 > 0 such that, for all x > 0,

P

∣∣∣∣∣∣
∑

1≤i1 6=i2≤N
u(Zi1 , Zi2)

∣∣∣∣∣∣ ≥ x
 ≤ K1 exp

(
−K2 min

(
x2

C2
,
x

D
,
x2/3

B2/3
,
x1/2

A1/2

))

where A,B,C,D are defined by

A = ‖u‖∞, B2 = N‖E(|u|2(Z, .)‖∞, C2 = N2E[|u|2(Z1, Z2)]

and
D = N sup

{∣∣E[u(Z1, Z2)|u1(Z1)u2(Z2)]
∣∣,E[u2

1(Z)] ≤ 1,E[u2
2(Z)] ≤ 1

}
.
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We apply this Lemma to the kernel

u(x, y) =

L∑
l=1

l∑
m=−l

Φlm(x)Φlm(y).

which is degenerate for Zi under H0. As one may have noticed, we stated the lemma above
with a kernel u taking complex values. Normally, the result of Giné et al. (2000) was stated
for real valued kernel. But their result can be extended to complex valued kernel by simply
separating the real and imaginary parts as shown below. Indeed if we denote uR and uI the real
and imaginary part of u it follows that

P

∣∣∣∣∣∣
∑

1≤i1 6=i2≤N
u(Zi1 , Zi2)

∣∣∣∣∣∣ ≥ x
 = P

∣∣∣∣∣∣
∑

1≤i1 6=i2≤N
uR(Zi1 , Zi2)

∣∣∣∣∣∣
2

+

∣∣∣∣∣∣
∑

1≤i1 6=i2≤N
uI(Zi1 , Zi2)

∣∣∣∣∣∣
2

≥ x2


≤ P

∣∣∣∣∣∣
∑

1≤i1 6=i2≤N
uR(Zi1 , Zi2)

∣∣∣∣∣∣
2

≥ x2

2

+ P

∣∣∣∣∣∣
∑

1≤i1 6=i2≤N
uI(Zi1 , Zi2)

∣∣∣∣∣∣
2

≥ x2

2

 .

Hence, it amounts to a real valued problem. We only deal with the real part since exactly
the same arguments remain true for the imaginary part. Let us show now that the bounds

A,B,C,D of Lemma 2 hold for the real part P
(∣∣∣∑1≤i1 6=i2≤N uR(Zi1 , Zi2)

∣∣∣2 ≥ x2/2

)
. Because

u2
R + u2

I = |u|2, we have uR ≤ |uR| ≤ |u|. Then

‖uR‖∞ ≤ ‖u‖∞ ≤ A

N‖E((uR)2(Z, .))‖∞ ≤ N‖E(|u|2(Z, .))‖∞ ≤ B2

N2E[(uR)2(Z1, Z2)] ≤ N2E[|u|2(Z1, Z2)] ≤ C2.

As for the last term D, since u1 and u2 are real valued

|E(u(Z1, Z2)u1(Z1)u2(Z2))|2 = |E(uR(Z1, Z2)u1(Z1)u2(Z2))|2 + |E(uI(Z1, Z2)u1(Z1)u2(Z2))|2

it entails that

N sup {E(uR(Z1, Z2)u1(Z1)u2(Z2))} ≤ N sup {|E(u(Z1, Z2)u1(Z1)u2(Z2))|} ≤ D

which concludes the justification our lemma.

Let us compute now the four bounds, A,B,C,D.

. Computation of A
Denoting by Y l(x) the vector (Y l

m(x))−l≤m≤l and using algebraic properties of the spherical
harmonics,

l∑
m=−l

|Φlm(x)|2 =
∑
m

|(f?lε−1Y
l(x))m|2 ≤ ‖f?lε−1‖2op

∑
m

|Y l
m(x)|2 ≤ d−2

0 l2ν
2l + 1

4π
. (14)
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We deduce that for all x, y ∈ S2,

|u(x, y)| ≤
L∑
l=1

(
l∑

m=−l
|Φlm(x)|2

l∑
m=−l

|Φlm(y)|2
)1/2

≤
L∑
l=1

π−1d−2
0 l2ν+1

so that A ≤ (π−1d−2
0 /(2ν + 2))(L+ 1)2ν+2.

. Computation of C
We state the following Lemma, which allows to control the order of the variance of the test
statistic.

Lemma 3. Under Assumption 1, denoting c3 = 3d−4
0 24ν+2/(4ν + 2)

L∑
l1,l2=1

l1∑
m1=−l1

l2∑
m2=−l2

|Ef0(Φl1m1(Z)Φl2m2(Z))|2 ≤ c3L
4ν+2

and
L∑

l1,l2=1

l1∑
m1=−l1

l2∑
m2=−l2

|Ef0(Φl1m1(Z)Φl2m2(Z))|2 ≤ c3L
4ν+2.

Proof. Under H0, the Zi are uniformly distributed on the sphere. Then

Ef0(Φl1m1Φl2m2(Z)) =

∫
Φl1m1Φl2m2(z)dz

=
∑
n1,n2

(f?l1
ε−1)m1n1(f?l2

ε−1)m2n2

∫
Y l1
n1(z)Y l2

n2
(z)dz

=
∑
n

(f?l1
ε−1)m1,n(f?l1

ε−1)m2,n1l1=l2 .

But, for any matrices A = (amn)−l≤m≤l,−l≤n≤l, B = (bmn)−l≤m≤l,−l≤n≤l∑
m1

|
∑
n

am1nbm2n|2 ≤ ‖A‖2op
∑
n

|bm2n|2 ≤ ‖A‖2op‖BT ‖2op = ‖A‖2op‖B‖2op

Then ∑
m1,m2

|Ef0(Φl1m1Φl2m2(Z))|2 ≤ ‖f?l1
ε−1‖4op(2l1 + 1)1l1=l2 (15)

and

L∑
l1,l2=1

∑
m1,m2

|Ef0(Φl1m1Φl2m2(Z))|2 ≤
L∑

l1=1

‖f?l1
ε−1‖4op(2l1+1) ≤ 3d−4

0

L∑
l1=1

l4ν+1
1 ≤ 3d−4

0

4ν + 2
(L+1)4ν+2.

For the second term, we can write, using (3)

Ef0(Φl1m1Φl2m2(Z)) =
∑
n

(f?l1
ε−1)m1,n(f?l1

ε−1)m2,−n(−1)n1l1=l2 .
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Then it is sufficient to apply the same method with matrix B such that bmn = (−1)n(f?l1
ε−1)m,−n =

(−1)nam,−n. The conclusion results from equality ‖B‖op = ‖A‖op. �

Lemma 3 gives C2 ≤ 3d−4
0 /(4ν + 2)N2(L+ 1)4ν+2.

. Computation of B
Let x ∈ S2 . We can write

Ef0 [|u(Z, x)|2] =
∑
l1,l2

∑
m1,m2

Ef0 [Φl1m1Φl2m2(Z)]Φl2m2(x)Φl1m1(x).

But we have seen previously than Ef0 [Φl1m1Φl2m2(Z)] vanishes when l1 6= l2. Then, using
Cauchy-Schwarz inequality, we compute

Ef0 [|u(Z, x)|2] ≤
∑
l

( ∑
m1,m2

|Ef0 [|Φlm1Φlm2(Z)]|2
∑
m1,m2

|Φlm1(x)Φlm2(x)|2
)1/2

.

Now, we use previous computations (15) and (14) to state

Ef0 [u2(Z, x)] ≤
∑
l

(
‖f?l1
ε−1‖4op(2l + 1)

)1/2∑
m

|Φlm(x)|2

≤
∑
l

(
3d−4

0 l4ν+1
)1/2

d−2
0 l2ν

2l + 1

4π

≤
L∑
l=1

√
3

π
d−4

0 l4ν+3/2 ≤
√

3d−4
0

π(4ν + 5/2)
(L+ 1)4ν+5/2.

Thus B2 ≤ /
√

3π−1d−4
0 /(4ν + 5/2)N(L+ 1)4ν+5/2.

. Computation of D
Let us first compute Ef0(Φlm(Z1)u1(Z1)) under H0. We denote by U l1 the vector of the Fourier
coefficients of u1 with harmonic order l: U l1 = (< u1, Y

l
n >)−l≤n≤l.

Ef0(Φlm(Z1)u1(Z1)) =

∫
Φlm(x)u1(x)dx =

l∑
n=−l

(f?lε−1)mn

∫
Y l
n(x)u1(x)dx

=
l∑

n=−l
(f?lε−1)mn < u1, Y

l
n >= (f?lε−1U

l
1)m.

Then
l∑

m=−l
|Ef0(Φlm(Z1)u1(Z1))|2 = ‖f?lε−1U

l
1‖2 ≤ d−2

0 l2ν‖U l1‖2.

But, using Parseval’s equality

∑
l≥0

‖U l1‖2 =
∑
l≥0

l∑
n=−l

| < u1, Y
l
n > |2 =

∫
u2

1(x)dx
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so that, under H0,
∑

l ‖U l1‖2 ≤ Ef0(u2
1(Z1)). In the same way we can prove

l∑
m=−l

|Ef0(Φlm(Z2)u2(Z2))|2 ≤ d−2
0 l2ν‖U l2‖2

with
∑

l ‖U l2‖2 ≤ Ef0(u2
2(Z1)). Then, using repeatedly Cauchy-Schwarz inequality,

Ef0(u(Z1, Z2)u1(Z1)u2(Z2)) =
L∑
l=1

l∑
m=−l

Ef0(Φlm(Z1)u1(Z1))Ef0(Φlm(Z2)u2(Z2))

≤
L∑
l=1

(
l∑

m=−l
|Ef0(Φlm(Z1)u1(Z1))|2

l∑
m=−l

|Ef0(Φlm(Z2)u2(Z2))|2
)1/2

≤
L∑
l=1

d−2
0 l2ν‖U l1‖‖U l2‖ ≤ d−2

0 L2ν

(
L∑
l=1

‖U l1‖2
L∑
l=1

‖U l2‖2
)1/2

≤ d−2
0 L2νE1/2

f0
(u2

1(Z1))E1/2
f0

(u2
2(Z2)).

Thus D ≤ d−2
0 NL2ν .

Conclusion
Now, using Lemma 2 with x = N(N − 1)t/2, we obtain

P (|TL| ≥ t) ≤ K1 exp

(
−K3 min

(
N2t2

L4ν+2
,
Nt

L2ν
,

Nt2/3

L4ν/3+5/6
,
Nt1/2

Lν+1

))
where K3 only depends on d0 and ν. Then

P
(
|TL| ≥ L2ν+1uN/N

)
≤ K1 exp

(
−K3 min

(
u2
N , uNL,N

1/3u
2/3
N L−1/6, N1/2u

1/2
N L−1/2

))
≤ K1 exp(−K0u

2
N )

provided that uN = O(L), L = O(N2u−8
N ) and L = O(Nu−3

N ).

8.4 Proof of Theorem 3

First, using Lemma 1

Pf0(DN = 1) ≤
∑
L∈L

Pf0
(
|TL| >

√
2K−1

0 t2L

)
≤
∑
L∈L

Pf0
(
|TL| > L2ν+1

√
2K−1

0 log logN/N

)
≤

∑
L∈L

K1 exp(−K0(2K−1
0 log logN)) = K1

∑
L∈L

exp(−2 log logN)

≤ K2|L|(log(N))−2 = O(log(N)−1) = o(1)

since |L| = O(log(N)). Then, for N large enough, Pf0(DN = 1) ≤ η/2.
Now let f ∈ H1(s,R, CψN ). Then

Pf (DN = 0) = Pf
(
∀L ∈ L, |TL| ≤

√
2K−1

0 t2L

)
≤ Pf

(
|TL∗ | ≤

√
2K−1

0 t2L∗

)
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with L∗ = 2j∗ and j∗ = blog2[(N/
√

log logN)1/(2s+2ν+1)]c. Remark that for N large enough,
4 log logN ≤ (N/

√
log logN)1/(2s+2ν+1) ≤ N/(log logN)3/2, so that j0 ≤ j∗ ≤ jm and L∗

belongs to L. Note also that with this choice t2L∗ ≤ ψN and L∗−2s ≤ 22sψN . Using triangle
inequality we have that

Pf
(
|TL∗ | ≤

√
2K−1

0 t2L∗

)
≤ Pf

(
|TL∗ − Ef (TL∗)| ≥ ‖f − f0‖22 −

√
2K−1

0 t2L∗ −Bf (TL∗)

)
(16)

where Bf (TL) = ‖f − f0‖22 − Ef (TL). If f is in the Sobolev ball Ws(S2, R), it directly follows
from the definition of Ws(S2, R) (8) that

Bf (TL) =
∑
l>L

∑
m

|f?lm |2 ≤ R2L−2s ≤ R222sψN .

We set C1 =
√

2K−1
0 +R222s and C2 = 1− C1/C > 0. Using the definition of H1

ψN ≤ C−1‖f − f0‖22.

Markov inequality yields the following upperbound for the expression (16)

Pf (DN = 0) ≤
Varf (TL∗)

C2
2‖f − f0‖4

. (17)

Let us now state the following Lemma which evaluate the variance of the estimator TL.

Lemma 4. If Assumption 1 is verified,

Varf (TL) ≤ c4

(
L4ν+2

N2
+
‖f − f0‖2L4ν+4

N2
+
‖f − f0‖2L2ν+1

N
+
‖f − f0‖3L2ν+2

N
+
‖f − f0‖4

N

)
where c4 only depends on d0 and ν.

Proof. We have
Varf (TL) = E((TL − E(TL))(TL − E(TL)).

Simple calculations entail that

Varf (TL) = −
∑
l1,m1

∑
l2,m2

|f?l1m1
|2|f?l2m2

|2

+
4

(N(N − 1))2

 L∑
l1,l2=1

l1∑
m1=−l1

l2∑
m2=−l2

E

(∑
i1<i2

Φl1m1(Zi1)Φl1m1(Zi2)
∑
i3<i4

Φl2m2(Zi3)Φl2m2(Zi4)

) .
The term

E

(∑
i1<i2

Φl1m1(Zi1)Φl1m1(Zi2)
∑
i3<i4

Φl2m2(Zi3)Φl2m2(Zi4)

)
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is bounded by∑
i1<i2

∑
i3<i4

E(Φl1m1(Zi1)Φl1m1(Zi2)Φl2m2(Zi3)Φl2m2(Zi4))

=
∑
i1<i2

∑
i3<i4

[
|f?l1m1
|2|f?l2m2

|21i1 6=i2 6=i3 6=i4 + |E(Φl1m1(Z)Φl2m2(Z))|21i1=i3,i2=i4

+|E(Φl1m1(Z)Φl2m2(Z))|21i1=i4,i2=i3 + E(Φl1m1(Z)Φl2m2(Z))f?l1m1f
?l2
m2
1i1=i3,i2 6=i4

+E(Φl1m1(Z)Φl2m2(Z))f?l1m1
f?l2m21i1 6=i3,i2=i4 + E(Φl1m1(Z)Φl2m2(Z))f?l1m1f

?l2
m21i1=i4,i2 6=i3

+E(Φl1m1(Z)Φl2m2(Z))f?l1m1
f?l2m2

1i1 6=i4,i2=i3)

]
.

Eventually we get that

Varf (TL) =

L∑
l1,l2=1

∑
m1m2

[(
(N − 2)(N − 3)

N(N − 1)
− 1

)
|f?l1m1
|2|f?l2m2

|2 (18)

+
1

N(N − 1)

(
|E(Φl1m1(Z)Φl2m2(Z))|2 + |E(Φl1m1(Z)Φl2m2(Z))|2

)
+

2(N − 2)

N(N − 1)
E(Φl1m1(Z)Φl2m2(Z))f?l1m1f

?l2
m2

+
2(N − 2)

N(N − 1)
R
(
E(Φl1m1(Z)Φl2m2(Z))f?l1m1f

?l2
m2

)]
where R(x) denotes the real part of x. We shall now upperbound each term that appears in the
expression (18) above.

. First term. Since
∑L

l=1

∑
m |f?lm |2 ≤ ‖f − f0‖2, we obtain

L∑
l1,l2=1

∑
m1m2

(
(N − 2)(N − 3)

N(N − 1)
− 1

)
|f?l1m1
|2|f?l2m2

|2 ≤ ‖f − f0‖42
N

.

. Second term. Firstly

|E(Φl1m1(Z)Φl2m2(Z))|2 =

∣∣∣∣∫ Φl1m1Φl2m2f0 +

∫
Φl1m1Φl2m2(fZ − f0)

∣∣∣∣2
≤ 2|Ef0(Φl1m1(Z)Φl2m2(Z))|2 + 2

∣∣∣∣∫ Φl1m1Φl2m2(fZ − f0)

∣∣∣∣2
≤ 2|Ef0(Φl1m1(Z)Φl2m2(Z))|2 + 2‖Φl1m1Φl2m2‖22‖fZ − f0‖22.

We can remark that, under Assumption 1,

‖fZ − f0‖22 =
∑
lm

|(fZ − f0)?lm|2 ≤
∑
l

‖f?lε ‖2op
∑
m

|(f − f0)?lm|2 ≤ ‖f − f0‖22

since ‖f?lε ‖op ≤ 1 for all l. Now let us show that there exists C1 > 0 such that

L∑
l1,l2=1

∑
m1,m2

‖Φl1m1Φl2m2‖22 ≤ C1L
4ν+4.
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We deduce from (14) that

∑
m1

∫
|Φl1m1(x)|2|Φl2m2(x)|2dx ≤ 3d−2

0

4π
l2ν+1
1

∫
|Φl2m2 |2 ≤

3d−2
0

4π
l2ν+1
1

∑
m

|(f∗l2
ε−1)m2m|2

≤ 3d−4
0

4π
l2ν+1
1 l2ν2 .

Then
L∑

l1,l2=1

∑
m1,m2

‖Φl1m1Φl2m2‖22 ≤
3d−4

0

4π

L∑
l1,l2=1

∑
m2

l2ν+1
1 l2ν2 ≤ C1L

4ν+4

and, using Lemma 3,

L∑
l1,l2=1

∑
m1,m2

|E(Φl1m1(Z)Φl2m2(Z))|2 ≤ 2

L∑
l1,l2=1

∑
m1,m2

|Ef0(Φl1m1(Z)Φl2m2(Z))|2

+2C1L
4ν+4‖f − f0‖22

≤ C2(L4ν+2 + L4ν+4‖f − f0‖22).

In the same way

L∑
l1,l2=1

∑
m1,m2

|E(Φl1m1(Z)Φl2m2(Z))|2 ≤ C2(L4ν+2 + L4ν+4‖f − f0‖22).

Thus, the second term is bounded by a constant times L4ν+2/N2 + L4ν+4‖f − f0‖22/N2.

. Third term. Using Cauchy Schwarz inequality we get

L∑
l1,l2=1

∑
m1,m2

f?l1m1
f?l2m2E(Φlm1(Z)Φlm2(Z)) ≤

 L∑
l1,l2=1

∑
m1,m2

|f?l1m1
|2|f?l2m2

|2
1/2

 L∑
l1,l2=1

∑
m1,m2

|E(Φl1m1(Z)Φl2m2(Z))|2
1/2

≤
√
C2 ‖f − f0‖22(L2ν+1 + L2ν+2‖f − f0‖2).

The third term is of order ‖f − f0‖22L2ν+1/N + ‖f − f0‖32L2ν+2/N .

. Fourth term. We bound the fourth term in the same way as the third.

Finally we have the bound for Varf (TL)

L4ν+2

N2
+
‖f − f0‖22L4ν+4

N2
+
‖f − f0‖22L2ν+1

N
+
‖f − f0‖32L2ν+2

N
+
‖f − f0‖42

N
.

�
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This gives

Varf (TL∗)

‖f − f0‖4
≤ c4

(
L∗4ν+2

N2‖f − f0‖4
+

L∗4ν+4

N2‖f − f0‖2
+

L∗2ν+1

N‖f − f0‖2
+

L∗2ν+2

N‖f − f0‖
+

1

N

)
.

Besides, as ‖f − f0‖22 ≥ C2−2sL∗−2s and N ≥ L∗2s+2ν+1
√

log logN , we get an upperbound for
(17) in terms of L∗

C3

(
1

C2 log logN
+

L∗2−2s

C log logN
+

1

C
√

log logN
+

L∗1−s√
C log logN

+
1

N

)
.

Since s ≥ 1, all these terms tend to zero when N goes to infinity. In conclusion for N large
enough, Pf (DN = 0) ≤ η/2.

8.5 Proof of Theorem 4

This proof follows the same line as the one of Theorem 3. We first give an adaptation of Lemma 4
in order to control the variance of TL:

Varf (TL) ≤ C0

(
L−4ν0+2−β

N2
e4Lβ/δ +

‖f − f0‖2L−4ν0+4−2β

N2
e4Lβ/δ

+
‖f − f0‖2L−2ν0+1−β/2

N
e2Lβ/δ +

‖f − f0‖3L−2ν0+2−β

N
e2Lβ/δ +

‖f − f0‖4

N

)
.

(19)

This result is obtained with standard integrals evaluation which give for any real α,

L∑
l=1

lαel
β/δ ≤ C

∫ L+1

1
xαex

β/δdx ≤ C ′Lα+1−βeL
β/δ (20)

(for L large enough if α < 0). Now, we evaluate the first type error. Using that Ef0(TL∗) = 0,
we write

Pf0(DN = 1) = Pf0
(
|TL∗ | > K0t

2
L∗
)
≤ K−2

0 t−4
L∗Varf0(TL∗)

≤ K−2
0 C0t

−4
L∗L

∗−4ν0+2−β exp (4L∗β/δ)N−2 ≤ K−2
0 C0L

∗−β ≤ η/2

for N large enough. To bound the error of the second kind, let f ∈ H1(s,R, CψN ). We have

Pf (DN = 0) ≤ Pf
(
|TL∗ | ≤ K0t

2
L∗
)
≤ Pf

(
|TL∗ − Ef (TL∗)| ≥ ‖f − f0‖22 −K0t

2
L∗ −Bf (TL∗)

)
.

The definition of L∗ implies that, for N large enough(
δ

16
log(N)

)1/β

≤ L∗ ≤
(
δ

8
log(N)

)1/β

.

That ensures that L∗−2s ≤ (δ/16)−2s/βψN and t2L∗ ≤ (δ logN/8)(−2ν0+1)/βN−3/4 ≤ ψN for N
large enough. We set C1 = K0 +R2(δ/16)−2s/β and C2 = 1− C1/C (which is positive if C large
enough). Markov inequality yields

Pf (DN = 0) ≤
Varf (TL∗)

C2
2‖f − f0‖4

. (21)
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Using (19), we bound

Varf (TL∗)

‖f − f0‖4
≤ C0

(
L∗−4ν0+2−β

N2‖f − f0‖4
e(4L∗β/δ) +

L∗−4ν0+4−2β

N2‖f − f0‖2
e(4L∗β/δ)

+
L∗−2ν0+1−β/2

N‖f − f0‖2
e(2L∗β/δ) +

L∗−2ν0+2−β

N‖f − f0‖
e(2L∗β/δ) +

1

N

)
.

Besides, as ‖f − f0‖22 ≥ C3L
∗−2s, we get the following upperbound

C4

(
(logN)(−4ν0+2−β+4s)/βN1/2

N2
+

(logN)(−4ν0+4−2β+2s)/βN1/2

N2

+
(logN)(−2ν0+1−β/2+2s)/βN1/4

N
+

(logN)(−2ν0+2−β+s)/βN1/4

N
+

1

N

)
.

and all these terms tend to zero when N goes to infinity.

8.6 Proof of Theorem 5

The proof is analogous to the proof of Theorem 1, with hypothesis functions

fθ = f0 +
L∑

m=−L
θLmϕLm, P(θLm = ±γ) = 1/2,

where
γ2 = c1 exp(−2Lβ/δ)L−2s+2ν0−1

and
L =

⌊
(2δ log(N))1/β

⌋
.

This choice of L ensures that, for N large enough,

(δ log(N))1/β ≤ L ≤ (2δ log(N))1/β.
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