Exponentially Localized Wannier Functions in Periodic Zero Flux Magnetic Fields - Archive ouverte HAL
Article Dans Une Revue Journal of Mathematical Physics Année : 2011

Exponentially Localized Wannier Functions in Periodic Zero Flux Magnetic Fields

Max Lein
  • Fonction : Auteur
  • PersonId : 857536

Résumé

In this work, we investigate conditions which ensure the existence of an exponentially localized Wannier basis for a given periodic hamiltonian. We extend previous results in [Pan07] to include periodic zero flux magnetic fields which is the setting also investigated in [Kuc09]. The new notion of magnetic symmetry plays a crucial role; to a large class of symmetries for a non-magnetic system, one can associate "magnetic" symmetries of the related magnetic system. Observing that the existence of an exponentially localized Wannier basis is equivalent to the triviality of the so-called Bloch bundle, a rank m hermitian vector bundle over the Brillouin zone, we prove that magnetic time-reversal symmetry is sufficient to ensure the triviality of the Bloch bundle in spatial dimension d=1,2,3. For d=4, an exponentially localized Wannier basis exists provided that the trace per unit volume of a suitable function of the Fermi projection vanishes. For d>4 and d<2m (stable rank regime) only the exponential localization of a subset of Wannier functions is shown; this improves part of the analysis of [Kuc09]. Finally, for d>4 and d>2m (unstable rank regime) we show that the mere analysis of Chern classes does not suffice in order to prove trivility and thus exponential localization.
Fichier principal
Vignette du fichier
1108.5651v2.pdf (450.24 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00674265 , version 1 (27-02-2012)

Identifiants

Citer

Giuseppe de Nittis, Max Lein. Exponentially Localized Wannier Functions in Periodic Zero Flux Magnetic Fields. Journal of Mathematical Physics, 2011, 52 (11), pp.112103. ⟨10.1063/1.3657344⟩. ⟨hal-00674265⟩
180 Consultations
368 Téléchargements

Altmetric

Partager

More