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In this work, we investigate conditions which ensure the existence of an

exponentially localized Wannier basis for a given periodic hamiltonian. We

extend previous results in [Pan07] to include periodic zero flux magnetic

fields which is the setting also investigated in [Kuc09]. The new notion of

magnetic symmetry plays a crucial rôle; to a large class of symmetries for a

non-magnetic system, one can associate “magnetic” symmetries of the related

magnetic system. Observing that the existence of an exponentially localized

Wannier basis is equivalent to the triviality of the so-called Bloch bundle, a

rank m hermitian vector bundle over the Brillouin zone, we prove that mag-
netic time-reversal symmetry is sufficient to ensure the triviality of the Bloch

bundle in spatial dimension d = 1,2,3. For d = 4, an exponentially local-

ized Wannier basis exists provided that the trace per unit volume of a suitable

function of the Fermi projection vanishes. For d > 4 and d ¶ 2m (stable rank

regime) only the exponential localization of a subset of Wannier functions

is shown; this improves part of the analysis of [Kuc09]. Finally, for d > 4

and d > 2m (unstable rank regime) we show that the mere analysis of Chern

classes does not suffice in order to prove trivility and thus exponential local-

ization.
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1 Introduction

A simple, but standard quantum model to study the conductance properties of a crystalline

solid is provided by the one-particle hamiltonian

HA =
�
− i∇x − A( x̂)

�2
+ V ( x̂) (1.1)

on L2(Rd) where V and A are effective electric and magnetic potentials generated by the

nuclei and all other electrons. The vector potential A = (A1, . . . ,Ad) is associated to the
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magnetic field B := (Bi j) with components Bi j := ∂x i
A j − ∂x j

Ai and 1 ¶ i, j ¶ d. We will

always assume the functions V , A and consequently B are periodic with respect to the

lattice

Γ :=
n
γ ∈ Rd

�� γ=
∑d

j=1
n j e j , n j ∈ Z, j = 1, . . . , d

o

where {e1, . . . , ed} is a basis of Rd . Throughout the paper, we will make the following

Assumption 1.1 (i) V ∈ L1
loc
(Rd) is Γ-periodic.

(ii) The components of B are Γ-periodic and C1. Furthermore, B satisfies the following zero

flux condition: for all 1¶ j < l ¶ d

∫

C j l

B = 0 (1.2)

holds where C jl denotes the parallelogram with vertices 0, e j, e j + el and el .

Remark 1.2 (Vector potentials) The assumptions obviously include the case B = 0. To

any magnetic field satisfying (ii), we can associate a Γ-periodic vector potential A such

that dA = B [HH94, Proposition 1]. In fact, unless explicitly stated otherwise, we will
always assume the vector potential of choice A is Γ-periodic.

Under these assumptions, HA defines a selfadjoint operator on a suitable domain in L2(Rd).

Moreover, its spectrum is absolutely continuous [Sus00] and has a band structure, i. e. it

can be seen as the locally finite union of closed intervals called bands which are separated

from each other by gaps [HH94, BS92a, BS92b, Kuc93].

Any efficient description of physical properties of crystalline solids makes use of the trans-

lational symmetry. In quantum mechanics, “efficient” often means two things: (1) one fo-

cusses on a “relevant” energy regime and (2) one chooses a “good” basis for the states that

lie in the energy range of interest. In solid state physics, the relevant energy range is typi-

cally the energies below the Fermi energy. There are two standard choices of a basis: Bloch
functions are more appropriate to describe delocalized phenomena such as conduction as

they are the analogs of plane waves [Wil78]. Or one can use Wannier functions which are

the analog of Dirac δ functions or molecular orbitals and are typically well-localized in a

region around a specific fundamental cell [MV97, MSV03]. Hence, Wannier functions are

more appropriate to justify tight-binding models, for instance [AM01, GP03, Wan37].

A characteristic of gapped semiconductors and insulators is the existence of gaps which

separate the relevant part of the spectrum S ⊂ Spec(HA) from the remainder, namely

dist
�
S, Spec(HA) \ S

�
> 0. (1.3)
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1 Introduction

If the Fermi energy EF lies in a spectral gap, then the material is an insulator or a semi-

conductor depending on the width of the gap. In this case, one generally focusses on the

portion of the spectrum that lies below EF, namely one chooses S= Spec(HA)∩ (−∞, EF]

as relevant part of the spectrum. Later on, we will see that a global gap in the sense of

equation (1.3) is not necessary, a local gap as in Assumption 2.1 suffices.

Since Spec(HA) consists of closed intervals, S is also the union of closed intervals. Due

to the spectral gap, the spectral projection

PS := 1S(H
A) =

i

2π

∫

C

dζ
�
HA− ζ

�−1
(1.4)

can be written either in terms of the characteristic function 1S associated to the Borel

set S ⊂ C or as a Cauchy integral involving a countour C ⊂ C enclosing S. To simplify

notation, we have suppressed the dependence of PS on the vector potential A. Associated

to S, we can define a special family of basis functions:

Definition 1.3 (Wannier system) A Wannier system {w1, . . . , wm} ⊂ L2(Rd) associated to
the projection PS is a family of orthonormal functions so that their translates w j,γ(·) :=

w j(·−γ) are mutually orthonormal, 〈w j,γ, w j′,γ′〉 = δ j j′ δγγ′ , and one can write the projection
as

PS =

m∑

j=1

∑

γ∈Γ

|w j,γ〉〈w j,γ|.

The functions w j are known as Wannier functions and the integer m is referred to as geo-

metric rank of PS.

The geometric rank m of any Wannier system associated to S turns out to be independent

of the particular choice of Wannier system (cf. Section 2.5).

Numerically, one would like to work with “quickly decaying” Wannier functions since

then, many computational methods scale linearly with system size [MV97, MSV03, Wan11].

As we will see later on, the relevant notion is that of exponential decay in a L2 sense,

namely:

Definition 1.4 (Exponential decay) Let K ⊂ Rd be any compact subsetset, K −γ its trans-
late by γ ∈ Γ and 1K−γ the associated characteristic function. We say that w ∈ L2(Rd) is
exponentially localized if and only if there exists a b ∈ (0,+∞) such that

sup
γ∈Γ

1K−γ w


L2(Rd)
eb|γ| <∞

holds.
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Obviously, this definition does not depend on the particular choice of K and we may use

the Wigner-Seitz cell W = K (cf. Section 2), for instance.

This paper concerns itself with the following

Question Under which conditions on the spatial dimension d and the geometric rank m
of PS can we guarantee the existence of an exponentially localized Wannier system?

We will adopt the commonly used strategy which is to rephrase this question in terms of

Bloch functions and make use of the rich tool set provided by complex analysis and fiber

bundle theory.

Let us first recall the connection between Wannier and Bloch functions (further details

can be found in Section 2). The lattice symmetry of HA allows us to fiber decompose the

hamiltonian in terms of Bloch momentum k by means of the Bloch-Floquet transform UBF,

and one obtains a family of operators

HA(k) =
�
− i∇y − A( ŷ)

�2
+ V ( ŷ)

on L2(W) with k-dependent domains. Here W is the Wigner-Seitz cell and ŷ denotes the

position operator. For each k ∈ Rd , the operator HA(k) has compact resolvent and thus

its spectrum consists of eigenvalues that accumulate at infinity. A Bloch function ϕA
n(k) is

then the solution to the eigenvalue equation

HA(k)ϕA
n(k) = EB

n (k)ϕ
A
n(k)

where EB
n (k) is the n-th eigenvalue. As is customary, we will order the EB

n (k) by magni-

tude and the functions k 7→ EB
n (k) are called Bloch bands. As the symbol EB

n indicates,

each Bloch band depends only on the magnetic field. This is a direct consequence of the

gauge covariance of HA(k) (cf. Section 2.3). Since HA(k) is analytic in k, the energy band

functions k 7→ EB
n (k) are analytic away from band crossings. Furthermore, since for each

k we are free to multiply ϕA
n(k) by a phase, we can choose Bloch functions so that the

k 7→ ϕA
n(k) are piecewise analytic [Wil78].

Now we can set

wA
n(x) := (U−1

BF
ϕA

n)(x) :=

∫

Bd

dk e− i k·(x−[x]W )ϕA
n(k, [x]W) (1.5)

where we have split x = [x]W + (x − [x]W) into a contribution contained within the

fundamental cell [x]W ∈W and a lattice vector x−[x]W ∈ Γ. The domain Bd is the usual

Brillouin zone which is the fundamental cell of the dual lattice Γ∗ whose faces have been

identified (cf. Section 2.1) and dk denotes the normalized Lebesgue measure on Bd . One

can show that {wA
1
, . . . , wA

m} forms a Wannier system in the sense of Definition 1.3 and the

geometric rank m of PS is the number of Bloch bands including multiplicity which make up
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1 Introduction

S. Since the {wA
1
, . . . , wA

m} are essentially Fourier transforms of Bloch functions, regularity

properties of Bloch functions translate into decay properties of Wannier functions. If the

Bloch function ϕA
n(k) associated to the n-th band is analytic, then by standard arguments

(a variant of the Paley-Wiener Theorem) this translates into exponential decay in the sense

of Definition 1.4.

A priori, it is not even clear whether we can make a choice of phase so that Bloch

functions ϕA
n are continuous on all of Rd and Γ∗-periodic in k. Even if one were to as-

sume continuity and Γ∗-periodicity, we know that in general, we cannot expect the Bloch

functions to be more regular as they are only continuous at band crossings. Hence, the

associated Wannier functions wA
n typically decay slowly, a consequence of the discontinu-

ities of k 7→ ϕA
n(k) or its derivatives. However, there still may be another family of analytic

and Γ∗-periodic functions

n
ψ j : Bd −→ L2(W)

�� j = 1, . . . , m
o

such that for each k, they are an orthonormal basis of

HS(k) := Ran PS(k) = span
�
ψ1(k), . . . ,ψm(k)

	
⊂ L2(W). (1.6)

Then by virtue of the Paley-Wiener theorem, the associated Wannier system {w1, . . . , wm},

w j := U−1
BF
ψ j , consists of exponentially decaying functions. The dimension m of the spaces

HS(k) is independent of k due to the analyticity of the spectral projection PS(k) (given by

equation (2.6)) and coincides with the geometric rank of PS given in Definition 1.3.

Before we proceed, let us discuss whether some conditions in the problem of proving the

existence of localized Wannier functions can be relaxed or whether asking for exponential

decay is the only sensible localization criterion. In principle, one can think of two ways to

simplify the question: one can either give up exponential decay or orthonormality. Let us

start with decay: one may think that the requirement of exponential decay can be relaxed

to polynomial decay, i. e.

1W−γ w j


L2(Rd )
¶ C(1+ |γ|)−β , ∀ j = 1, . . . , m, γ ∈ Γ,

holds for some C > 0 and β > 0. But interestingly, Kuchment has shown [Kuc09, Theo-

rem 5.4] that this is not the case: if one can show that the w j are polynomially localized

for β > d, then one can find a Wannier system which is exponentially localized. If on the

other hand β ¶ d, then the decay is considered to be too slow to be useful for numerics.

A second option would be to give up the requirement that the w j be mutually or-

thogonal and one works with an overcomplete set of exponentially localized functions.

Kuchment has shown that it is always possible to find a family of exponentially localized

functions {w̃1, . . . , w̃m′} for some m ¶ m′ ¶ 2d m such that their translates w̃ j,γ := w̃ j(·−γ)

span Ran PS [Kuc09, Theorem 5.7]. So even in cases, where we are unable to find an ex-

ponentially localized basis, one can still choose m′ > m exponentially localized functions
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w̃ j that form a so-called 1-tight (or Parseval) frame rather than an orthonormal basis.

Parseval frames, even though they are overcomplete and do not consist of orthonormal

functions, retain many of the advantages of a true orthonormal basis.

State of the art

Historically, the question of existence of exponentially localized Wannier functions has

received a lot of attention, especially in the absence of magnetic fields.

Let us focus on the results concerning the case B = 0. The first rigorous work by Kohn

dates back to 1959 [Koh59] and treats the d = 1 case. Due to the dimensionality, it is

always possible to choose analytic Bloch functions and thus find exponentially decaying

Wannier functions. Note that since there are no magnetic fields, Kohn’s result covers all

possibilities in d = 1.

Since Kohn’s ideas do not extend to higher spatial dimensions, it took until 1983 to

see progress for the case d ¾ 2 and m = 1: Nenciu [Nen83] used time-reversal symmetry
to prove the existence of exponentially localized Wannier functions associated to isolated

bands. An independent and elegant constructive proof was given by Helffer and Sjöstrand

in 1989 [HS89].

The first to realize the rôle of topological obstructions in proving existence of expo-

nentially localized Wannier functions was Thouless [Tho84]. He noticed that it is not

possible to choose exponentially localized Wannier functions if the first Chern class of an

associated vector bundle (i. e. the Bloch bundle, cf. Section 4) does not vanish. Simon

[Sim83] had recognized that one such condition which guarantees the vanishing of the

first Chern class is the absence of magnetic fields, i. e. in the presence of time-reversal

symmetry. Nenciu [Nen91] stressed the significance of the Oka principle (cf. Section 2.6)

which meant that proving the existence of continuous Γ∗-periodic Bloch functions implied

the existence of analytic Γ∗-periodic Bloch functions.

In the works of Panati [Pan07], all these pieces are put together and the triviality of

the Bloch bundle for m ¾ 1 and d ¶ 3 is shown, thus covering most physical situations.

He shows that the vanishing of the first Chern class suffices to ensure the triviality of the

Bloch bundle for such low dimensions d. The link to exponential localization of Wannier

functions was explained in a subsequent publication [BPC+07].

The geometric content of Panati’s proof is tied to an important result from the classification

theory of vector bundles by Peterson [Pet59]: it assures that the vanishing of all Chern

classes is a necessary and sufficient condition for the triviality of the Bloch bundles only

if d ¶ 2m, i. e. if the fibers are of high enough dimension; this is called the stable rank
condition. Since only Chern classes c j for which 2 j ¶ d holds can be non-trivial, for

d = 2,3, one only needs to investigate the first Chern class. By the fortunate coincidence

that line bundles, i. e. m = 1, are completely characterized by their first Chern class, and

that for m ¾ 2, the stable rank condition d ¶ 2m is always satisfied as long as d ¶ 3, the
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1 Introduction

vanishing of the first Chern class is equivalent to the triviality of the bundle. Thus, Panati’s

result is included as a special case of a deeper fact from the classification theory of vector

bundles.

The above analysis also justifies the absence of any result in higher dimensions. Indeed,

to show exponential localization for the relevant case d = 4 and m ¾ 2, for instance,

one needs to control the second Chern class, and time-reversal symmetry is of no help

here (cf. Theorem 5.4). Moreover, if d ¾ 5 and the fibers are low-dimensional, d >
2m, then there are examples of non-trivial vector bundles whose Chern classes all vanish

(cf. Section 5.7). In this sense, the stable rank condition is not a mere technical, but

an essential condition, and Peterson’s result shows the limitations of using characteristic

classes to prove exponential localization of Wannier functions.

For the magnetic case B 6= 0, the literature is more scarce: there are early works by

Dubrovin and Novikov [DN80] and Novikov [Nov81] which treated the case of periodic

magnetic field with rational flux perturbed by a weak potential. They recognize that prop-

erties of magnetic Bloch functions are determined by the geometry of the Bloch bundle,

and that in general, the presence of the magnetic fields makes this vector bundle topo-

logically non-trivial. This is in accord with the previously mentioned paper by Thouless

[Tho84].

Without making use of bundle theory, Nenciu proved the existence of exponentially lo-

calized Wannier functions for a weak constant magnetic field [Nen91, Theorem 5.2]: he

has shown that for a single isolated band, the projection associated to magnetic trans-

lations of the exponentially localized non-magnetic Wannier function is close to the true

spectral projection for B 6= 0 and then proceeds to prove the existence of an exponentially

localized magnetic Wannier function by a perturbative argument. His result is not in con-

tradiction to the results mentioned earlier: the weak field condition ensures that one is in

the regime where the first Chern class is zero.

Lastly, we would like to mention again the important work by Kuchment [Kuc09] which

is complementary: for magnetic fields which admit periodic vector potentials (our set-

ting), he does not show the triviality of the Bloch bundle, but instead that if one gives

up the orthonormality of the Wannier functions: one can always find an overcomplete

set of exponentially localized Wannier functions. Indeed, as we shall see in a moment, if

the spatial dimension is small enough, it is still possible to have a genuine system of m
exponentially localized Wannier functions.

New results: magnetic symmetries and geometric conditions on triviality

The presence of magnetic fields in general changes the topology of the Bloch bundle.

In this work though, we will show that for magnetic fields which admit periodic vector

potentials, the topology of the Bloch bundle is the same as in the case when B = 0.

In the absence of magnetic fields, time-reversal symmetry is at the heart of most proofs
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which show the existence of exponentially localized Wannier functions. While magnetic

fields break time-reversal symmetry, we show the hamiltonian HA has magnetic time-

reversal symmetry.

Theorem 1.5 (Magnetic time-reversal symmetry) Let Assumption 1.1 on HA be satisfied.
Then the operator HA given by (1.1) has magnetic time-reversal symmetry, that is, it com-
mutes with the anti-unitary operator CA defined by

(CAΨ)(x) := e
+ i 2

∫
[0,x]

A
Ψ∗(x) (1.7)

where Ψ ∈ L2(Rd) and x ∈ Rd . Furthermore, magnetic time-reversal commutes with lattice
translations.

The idea of “magnetic symmetries” can be put in a larger context: if H0 := HA=0 has

a symmetry with certain natural properties (cf. Definition 3.1), then we show how to

associate a magnetic symmetry to HA in a canonical way (cf. Definition 3.2). Gallilean

symmetries (e. g. translations and rotations), for instance, have a magnetic version. We

reckon that magnetic symmetries could be useful in different contexts and this direction

will be explored in a future work [DL11b].

The presence of this newly found symmetry CA of HA is the crucial ingredient to prove

Theorem 1.6 (Existence of an exponentially localized Wannier system) Let Assump-
tions 1.1 and 2.1 be satisfied, and let us denote the dimension of Bd and the geometric
rank of the Wannier system with d and m. Then an exponentially localized Wannier system
associated to PS exists if

(i) d ¾ 1 and m = 1 or

(ii) d = 1,2,3 and m¾ 2.

This theorem is proven by combining Proposition 4.3 with Proposition 5.1 for (i) and

Corollary 5.5 for (ii), respectively. Our proof is very close in spirit to Panati’s [Pan07],

but there are a few crucial differences: we use more abstract arguments, e. g. cohomology

classes and the Kronecker pairing rather than differential forms and integration. This gives

us access to powerful tools of algebraic topology for the classification of vector bundles.

In this language, the presence of time-reversal symmetry leads to a geometric constraint

connecting the fibers attached to conjugate points (cf. Theorem 4.6), and the conjugate
Bloch bundle can be seen as the pullback bundle with respect to the function which maps

k 7→ −k. Since Chern classes of a bundle and its conjugate agree up to a sign, it follows

that all odd Chern classes vanish (cf. Theorem 5.4). Note that the dimensional constraints

are necessary since in higher dimensions d, additional topological obstructions (measured

by Chern classes, cf. Section 5.2) appear and the presence of time-reversal symmetry does

not suffice to ensure the existence of an exponentially localized Wannier system.

9



1 Introduction

Apart from being of pure mathematical interest, the case d = 4 is also relevant in many

physical situations: for instance, if one considers periodic deformations of period T of

crystalline solids in 3 spatial dimensions, then space-time is given by B3 × R/TZ ∼= T4

[Lei05, PST09]. In this context, Section 6 of [PST09] which covers the rôle of time-

reversal symmetry and parity should be compared to Theorem 4.6 and its ramifications on

the structure of the Bloch bundle (cf. beginning of Section 5.3). Moreover, the geometric

aspects related to the case d = 4 seem to have interesting connections with gauge theories

on “compactified space-times” T4 [Nas83, Sch88, BV89]. Albeit in d = 4 it is not possible

to prove a priori the existence of an exponentially localized Wannier system if m¾ 2, our

analysis yields a

Theorem 1.7 (Criterion for exponential localization in d = 4) Let Assumptions 1.1 and
2.1 be satisfied, and assume d = 4 and m ¾ 2. Then there exists an exponentially localized
Wannier system associated to PS if and only if

T (WS) = 0 (1.8)

where T denotes the trace per unit volume (cf. equation (2.7)) and WS is related to PS by

WS :=Q12(PS)Q34(PS)−Q13(PS)Q24(PS) +Q14(PS)Q23(PS)

with Qi j(PS) := PS

�
δi PS,δ j PS

�
PS and δ j := − i

2π
[ x̂ j , ·] the j-th derivative (cf. equa-

tion (2.8)).

This result is an immediate corollary of Theorem 5.6 and Proposition 2.4. The main

point is that the bounded operator WS is related to the second differential Chern class

of the Bloch bundle and condition (1.8) implies the vanishing of the latter. Prodan has

proposed an efficient numerical scheme to evaluate quantities like T (WS) [Pro11], so the

numerical verification of equation (1.8) provides a criterion to decide whether or not an

exponentially localized Wannier system exists in d = 4.

Apart from proving the existence of an exponentially localized Wannier system, our re-

sults can be applied to space-adiabatic perturbation theory [PST03, DL11a, DP10]: here,

one needs a smooth Bloch basis in order to satisfy a technical assumption in the construc-

tion (Assumption A2 in [PST03] or Assumption 3.2 in [DL11a]). Our result here allows

us to extend [DL11a] to include periodic magnetic fields: any Γ-periodic magnetic field

B = Bflux+ B0 can be decomposed into a constant magnetic field Bflux whose flux through

the Wigner Seitz cell W coincides with the total flux of B and a magnetic field B0 with

zero flux through W . If the total flux of B is small, then Bflux is small and one can regard

Bflux as a perturbation of B0. The zero flux field enters the unperturbed hamiltonian by a

Γ-periodic vector potential while the constant field is seen as a perturbation. Thus, one

can repeat the arguments in [DL11a] verbatim, but in this case the unperturbed objects

(symbols, opertators, etc.) include the periodic magnetic field and vector potential.
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In our approach, it is clear how to generalize Theorem 1.6 to d > 4: in view of Corol-

lary 5.3 and Theorem 5.4, an exponentially localized Wannier system exists, provided that

⌊d/4⌋ (i. e. the integer part of d/4) extra conditions are verified, namely the vanishing of the

even Chern classes. Otherwise, we can only ensure the exponential localization of some

of the Wannier functions.

Theorem 1.8 (Partially localized Wannier systems) Let Assumptions 1.1 and 2.1 be sat-
isfied. Define σ :=max

�
0, m− ⌊d/2⌋

	
. Then the following statements hold true:

(i) At least σ generators of the Wannier system are exponentially localized.

(ii) In the special case d = 4k + 2, at least σ + 1 generators of the Wannier system are
exponentially localized.

This result follows from Proposition 4.3 and some general facts concerning the classifica-

tion of vector bundles. The proof will be given in Section 5.6. With the above theorem, we

can improve the results of Kuchment: we can give a smaller upper bound on the number

m′ of functions spanning the 1-tight frame, namely m¶ m′ ¶ M where M = 2d(m−σ)+σ
or M = 2d(m−σ− 1) +σ+ 1 in the special case d = 4k+ 2.

Finally, if d > 2m, then the vanishing of all Chern classes is only a necessary but not

sufficient condition for the triviality of the Bloch bundle. Indeed, in Section 5.7 we will

construct a rank 2 bundle over B5 which is non-trivial but whose Chern classes all vanish.

This means that in the unstable rank regime, one needs to complement the analysis of

characteristic classes with other techniques in order to prove the existence of an exponen-

tially localized Wannier system.

Content

The paper is organized as follows: we first give a brief introduction to Bloch-Floquet the-

ory in Section 2 and discuss how the Oka principle ties in with the main result. The trace

per unit volume and its relation with the Bloch-Floquet decomposition will be discussed.

The notion of magnetic symmetry is given in Section 3. We cover not only the important

case of magnetic time-reversal and parity, but also give other examples of other Galilean

symmetries. In Section 4 we give a primer on vector bundle theory and construct the

Bloch bundle. We explain the link between exponential localization of the Wannier sys-

tem and the triviality of the Bloch bundle. Moreover, the consequences of the presence

of magnetic time-reversal symmetry or parity on the structure of the Bloch bundle are

explored. Finally, in Section 5 the geometry of the Bloch bundle is characterized by the

Chern classes. In particular, we prove the vanishing of all odd Chern classes (not only the

first!) and we deduce conditions for the triviality of the Bloch bundle.
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2 The Bloch-Floquet theory

To fix notation and make this work self-contained, we will give a short overview over

Bloch-Floquet theory starting from a slightly non-standard angle which allows for inter-

esting generalizations [BDM11]. For a more detailed account, we refer to [Wil78, RS78,

BS91, Kuc93].

2.1 The Bloch-Floquet transform

Since HA is Γ-periodic, we will first decompose Rd into Γ ×W , i. e. we write each

Rd ∋ x = γ+ y where γ ∈ Γ is a lattice vector and y ∈ W is a vector attached to the

origin of the fundamental cell W . In physics, one often chooses the Wigner-Seitz cell (also

known as Varanoi cell), but any other open convex polytope W satisfying (i) 0 ∈W , (ii)⋃
γ∈ΓW + γ = R

d and (iii) (W + γ1) ∩ (W + γ2) = ; for all γ1 6= γ2 will do. The family

{W + γ}γ∈Γ defines a periodic tiling of Rd .

The splitting Rd ∼= Γ×W induces the decomposition

Usplit : L2(Rd) −→ ℓ2(Γ)⊗ L2(W), UsplitΨ :=
∑

γ∈Γ

δγ⊗ T−γΨ|W ,

where {δγ}γ∈Γ is the canonical basis of ℓ2(Γ) and Tγ denotes lattice translations by γ ∈ Γ,

(TγΨ)(x) := Ψ(x − γ). The splitting of real space induces a splitting of momenta p ∈

Rd ∗ ∼= Γ∗ ×Bd into a dual lattice vector γ∗ ∈ Γ∗ and an element of the first Brillouin zone

k ∈ Bd . The dual lattice is spanned by the vectors {e∗
1
, . . . , e∗d} which are defined through

the relation el · e
∗
j = 2πδl j while the Brillouin zone is the quotient group Bd := Rd ∗/Γ∗.

Note that this definition deviates from the more common one where Bd is a fundamental

cell associated to the dual lattice Γ∗. Instead, we glue opposite faces of the fundamental

cell together, because then we can identify the quotient Bd with the torus

Td =
n

z = (z1, . . . , zd) ∈ C
d
�� ��z j

��= 1, j = 1, . . . , d
o

by means of so-called Floquet multipliers

z = e i k :=
�
e i k·e1 , . . . , e i k·ed

�
=
�
e i 2π k1 , . . . , e i 2π kd

�

12



2.2 Recovering Bloch bands

This identification is also used when introducing the Fourier transform

(F c)(k) =
∑

γ∈Γ

e− i k·γ c(γ), c ∈ ℓ2(Γ)∩ ℓ1(Γ), (2.1)

as a map F : ℓ2(Γ) −→ L2(Bd , dk) where the measure dk is normalized so that F is uni-

tary. We will not overly stress that elements of Bd are really equivalence classes, and the

fact (F c)(k−γ∗) = (F c)(k) can either be interpreted as Γ∗-periodicity of the transformed

function F c or equivalently that F c is well-defined on Bd since its value is independent

of the choice of representative k ∈ Bd .

The Bloch-Floquet transform UBF := (F ⊗ idL2(W)) ◦Usplit is a unitary map

UBF : L2(Rd)−→ L2(Bd)⊗ L2(W)

which acts on Ψ ∈ L2(Rd) as

�
UBFΨ

�
(k) =

∑

γ∈Γ

e− i k·γ T−γΨ|W (2.2)

and inherits the Γ∗-periodicity of F in k,

�
UBFΨ

�
(k− γ∗) =

�
UBFΨ

�
(k). (2.3)

2.2 Recovering Bloch bands

Now we turn back to the discussion of the operator HA. Assumption 1.1 and Remark 1.2

allow us to choose a vector potential A representing B whose components are Γ-periodic

with bounded first-order derivatives and we conclude from standard arguments (cf. [RS78,

Theorem XIII.96], for instance) that HA defines a selfadjoint operator on H2(Rd). Note

that we do not strive for utmost generality here, presumably, our arguments can be

adapted to more general situations. Only lattice periodicity is crucial since it leads to

a direct integral decomposition of HA in crystal momentum k,

UBFHA
U
−1
BF
=

∫ ⊕

Bd

dk HA(k) :=

∫ ⊕

Bd

dk
��
−i∇y − A( ŷ)

�2
+ V ( ŷ)

�
. (2.4)

While the operator prescription of HA(k) is independent of k ∈ Bd , its domain

H2
k(W) :=

n
ϕ|W

�� ϕ ∈ H2
loc
(Rd), Tγ∂

a
y ϕ = e− i k·γ∂ a

y ϕ ∀a ∈ Nd , |a|¶ 1, ∀γ ∈ Γ
o

is not. More precisely, the Bloch-Floquet transform decomposes the domain of HA,

UBF : H2(Rd)−→

∫ ⊕

Bd

dk H2
k (W),

13



2 The Bloch-Floquet theory

and each HA(k) is a selfadjoint operator on H2
k(W). It is readily seen that the k-dependent

Bloch boundary conditions on elements of H2
k(W) and their first-order derivatives are a

direct consequence of equation (2.2). These boundary conditions are well-posed: the

Wigner-Seitz cell W is a Lipschitz domain and thus, the trace theorem [LM72] ensures

that restricting a H2
loc
(Rd) function to ∂W yields a sufficiently regular function.

By standard theory [RS78, BS91], for each k ∈ Bd , the operator HA(k) has purely

discrete spectrum accumulating at infinity, Spec
�
HA(k)

�
= {EB

n (k)}n∈N. As is customary,

we will order the EB
n (k) in non-decreasing order, i. e. we have EB

n (k) ¶ EB
n+1
(k) for all

n ∈ N, and repeat each according to its multiplicity. The corresponding eigenfunctions

k 7→ ϕA
n(k) which satisfy

HA(k)ϕn(k) = EB
n (k)ϕ

A
n(k) (2.5)

for each k are called Bloch functions. The analyticity of k 7→ HA(k) [Kat95, RS78] im-

plies that the maps k 7→ EB
n (k) are continuous everywhere and analytic away from band

crossings. The band functions also inherit the Γ∗-periodicity of HA(k) = HA(k− γ∗) which

follows directly from the definition of the domain H2
k(W). The spectrum of HA can be

expressed in terms of the band functions as

Spec(HA) =
⋃

n∈N

EB
n (B

d).

Similarly, if we choose the phase of ϕA
n(k) for each k properly, we can also ensure that

k 7→ ϕA
n(k) are piecewise analytic functions with values in L2(W). However, in general it

may not be possible to choose the phases in such a way that Bloch functions are analytic

or even just continuous on all of Bd , a fact that is related to the main point of our work.

Assumption 2.1 (Local spectral gap) There exists a family of relevant bands {EB
n }n∈I ,

with I ⊂ N of finite cardinality |I|= m, such that

inf
k∈Bd

dist
�⋃

n∈I

{EB
n (k)},

⋃

n∈N\I

{EB
n (k)}

�
=: Cg > 0

holds. For brevity, we denote the collection of eigenvalues with S(k) :=
⋃

n∈I

�
EB

n (k)
	
.

The relevant part of the spectrum

S =
⋃

k∈Bd

S(k)

is then recovered as the union of the local spectra.

Fiber-wise, we can define the projection

PS(k) := 1S(k)

�
HA(k)

�
=

i

2π

∫

C(k)

dζ
�
HA(k)− ζ

�−1
(2.6)

14



2.3 Gauge-covariance

onto the relevant eigenvalues {EB
n (k)}n∈I; it can also be written in terms of a Cauchy

integral around the k-dependent contour C(k) which encloses S(k). Alternatively, we can

express PS(k) in terms of normalized Bloch functions as

PS(k) =
∑

n∈I

��ϕA
n(k)

¶¬
ϕA

n(k)
�� .

Even though the Bloch functions need not be continuous, the gap condition described in

Assumption 2.1 ensures PS(k) depends analytically on k. We can combine all the fiber

operators to the projection

PS := U
−1
BF

 ∫ ⊕

Bd

dk PS(k)

!
UBF

on L2(Rd). However, unless there is a global gap, PS cannot be written as 1S(H
A) for

some set S, namely it is not a spectral projection of HA. This means that Assumption 2.1

is stronger than the existence of a global spectral gap as in equation (1.3). Finally, the

geometric rank of PS defined in Definition 1.1 coincides with |I|.

2.3 Gauge-covariance

We have previously indicated that the family of Bloch functions {EB
n }n∈N depends on the

magnetic field B rather than a particular choice of vector potential. This is due to covari-

ance, i. e. if A′ = A+∇χ is an equivalent gauge for B, then HA and

HA+∇χ = e− iχ(x̂) HA e+ iχ(x̂)

are unitarily equivalent and as such isospectral. Hence, the spectrum of HA depends only

on the magnetic field B. If χ is a Γ-periodic gauge function, then

UBFHA+∇χ
U
−1
BF
=

∫ ⊕

Bd

dk HA+∇χ(k) =

∫ ⊕

Bd

dk e− iχ( ŷ)HA(k)e+ iχ( ŷ)

also fibers in k and HA(k) and HA+∇χ(k) are also related via e− iχ( ŷ). This implies that also

the fiber hamiltonians are unitarily equivalent and thus, the band functions depend only

on B.

2.4 Integration and derivation

Later on, we will need the notions of trace per unit volume and that of a derivation of

bounded operators on L2(Rd). These notions have been studied extensively in the last

decades in the context of quasi-periodic or random operators. Albeit we are interested
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2 The Bloch-Floquet theory

only in the periodic case, we refer the reader to [Bel93] and references therein for a more

detailed discussion.

Consider an increasing sequence 0 ∈ Γ1 ⊂ Γ2 ⊂ . . . ⊂ Γ of bounded subsets of the lattice

Γ with the property that Γnր Γ. To this sequence we can associate the sequence {Wn}n∈N
of subsets of Rd defined by Wn :=

⋃
γ∈Γn

W + γ. A bounded operator Y ∈ B(L2(Rd))

admits a trace per unit volume if

T (Y ) := lim
n→∞

1

|Γn| |W |
TrL2(Rd )

�
1Wn

Y 1Wn

�
<∞ (2.7)

where |Γn| denotes the cardinality of Γn, |W | is the volume of the Wigner-Sitz cell and 1Wn

is the characteristic function of Wn which acts as a projection 1Wn
: L2(Rd) ,→ L2(Wn).

One can show that T (A) is independent of the particular choice of Wn ր R
d , we could

have used any other Følner sequence of subsets for Rd .

The significance of the trace per unit volume to periodic operators is provided by the

following

Lemma 2.2 Let Y be a bounded Γ-periodic operator acting on L2(Rd) and

UBF Y U
−1
BF
=

∫ ⊕

Bd

dk Y (k)

be its Bloch-Floquet decomposition. Suppose in addition that Y (k) is trace-class in L2(W) for
almost all k ∈ Bd and

k 7→ TrL2(W)

�
Y (k)

�
∈ L1(Bd).

Then the trace per unit volume of Y is finite and given by

T (A) =

∫

Bd

dk
1

|W |
TrL2(W)

�
A(k)

�
.

Proof The proof of this result is based on the following two relations which can be easily

checked (see [PST09, Lemma 3.3] for more details):

TrL2(Rd )

�
1W Y 1W

�
=

∫

Bd

dk TrL2(W)

�
Y (k)

�
<+∞

and

TrL2(Rd )

�
1W+γ Y 1W+γ

�
= TrL2(Rd )

�
1W T−1

γ Y Tγ 1W

�
= TrL2(Rd )

�
1W Y 1W

�

holds for all γ ∈ Γ.
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2.4 Integration and derivation

We denote by K1
Γ

the subset of B
�

L2(Rd)
�

which consists of Γ-periodic operators which

satisfy the assumptions of Lemma 2.2. By means of standard arguments for trace-class

operator [RS72, Chapter VI], one can prove that K1
Γ

is an ideal: if Y ∈ K1
Γ

and X is

bounded and Γ-periodic then both X Y and Y X are in K1
Γ
. Thus, T has the trace property,

i. e. T
�
[Y, X ]

�
= 0 holds for any Y ∈ K1

Γ
and Γ-periodic X ∈ B

�
L2(Rd)

�
.

The second notion that we need is that of derivatives: if Y ∈ B(L2(Rd)) is a bounded

operator on L2(Rd) we define its j-th derivative as

δ jY :=− i

2π
[ x̂ j , Y ], j = 1, . . . , d, (2.8)

where x̂ j denotes the position operator projected in the j-th direction of the lattice, namely

the multiplication by the function x · e j . It is easy to check that the δ j verify all the formal

properties of a derivation, i. e. they are linear and satisfy the Leibniz rule. We say that Y
is of class Cs if δ j1 ◦ · · · ◦δ js(Y ) ∈ B(L

2(Rd)) for any choice of the s derivatives.

Lemma 2.3 Let Y be a bounded operator on L2(Rd) which is Γ-periodic and C1. Then the
following statements hold true:

(i) δ jY is Γ-periodic for any j = 1, . . . , d.

(ii) Let k 7→ Y (k) be the map associated to the Bloch-Floquet decomposition of Y . Then the
derivative ∂k j

Y (k) is a well-defined bounded operator on L2(W) for almost all k ∈ Bd

and j = 1, . . . , d. Moreover, we have

eUBF δ jY eU−1
BF
=

∫ ⊕

Bd

dk ∂k j
Y (k) (2.9)

where eUBF := GUBF and G :=
∫ ⊕
Bd dk G(k) is the unitary operator on L2(Bd)⊗ L2(W)

defined fiberwise by G(k)ψ(k, y) := e− i k·yψ(k, y).

Proof (i) follows simply observing that Tγ x̂ j T−1
γ = x̂ j − (γ · e j) idL2(Rd ).

(ii) A simple computation shows that

� eUBFΨ
�
(k, y) =

�
GUBFΨ

�
(k, y) =

∑

γ∈Γ

e− i k·(y+γ) Ψ(y + γ)

Let L(b) be the unitary operator on L2(Rd) defined by
�

L(b)Ψ
�
(x) := e− i b·x Ψ(x)

with b ∈ Rd . After Bloch-Floquet transform, L(b) acts as a translation in crystal

momentum,

� eUBFL(b)Ψ
�
(k, y) =

∑

γ∈Γ

e− i k·(y+γ) e− i b·(y+γ) Ψ(y + γ) = ( eUBFΨ)(k+ b, y),
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2 The Bloch-Floquet theory

which in particular implies

eUBF

�
L(b)Y L(b)−1

� eU−1
BF
=

∫ ⊕

Bd

dk Y (k+ b). (2.10)

Then from the strong limit

lim
ǫ→0

L(ǫ e j)Y L(ǫ e j)
−1− Y

ǫ
= 2πδ j(Y ) (2.11)

and using the modified Bloch-Floquet transform eUBF, one deduces the existence of

lim
ǫ→0

Y (k1, . . . , k j + ǫ2π, . . . , kd)− Y (k1, . . . , k j , . . . , kd)

ǫ
:= 2π (∂k j

Y )(k) (2.12)

in the strong sense on L2(W) for almost all k ∈ Bd . Equation (2.9) then follows

immediately from (2.10) and the definition of the limits (2.11) and (2.12).

The unitary eUBF is also known as the Zak-Bloch-Floquet transform (cf. [Pan07, Section 3.2]

for a comparison to the usual Bloch-Floquet transform).

A local spectral gap for S (cf. Assumption 2.1) assures that the map k 7→ PS(k) is

smooth. The fact that the ∂k j
PS(k) are well-defined bounded operators on L2(W), and the

arguments in Lemma 2.3 show that the projection PS is C1. The link between derivatives

and trace per unit volume for projections which share the properties of PS is established

in the next result.

Proposition 2.4 Let P be a Γ-periodic and C1 orthogonal projection on L2(Rd). Assume
that after Bloch-Floquet decomposition any fiber projection P(k) has finite constant rank m
and fix

Qi j(P) := P
�
δi P,δ j P

�
P and Q̃i j(P)(k) := P(k)

�
∂ki

P(k),∂k j
P(k)

�
P(k).

Then Qi1 j1(P) · · ·QiN jN (P) ∈ K
1
Γ

for any i1, j1, . . . , iN , jN = 1, . . . , d and

T
�
Qi1 j1(P) · · ·QiN jN (P)

�
=

1

|W |

∫

Bd

dk TrL2(W)

�
Q̃i1 j1(P)(k) · · · Q̃iN jN (P)(k)

�
.

Proof The Γ-periodicity and the boundness of any factor Qi j(P) follows immediately from

the definition. By Lemma 2.2, the product Qi1 j1(P) · · ·QiN jN (P) is also in K1
Γ
. Hence,

our operators all have the structure PYP where Y is bounded and Γ-periodic. Then the

estimate

���TrL2(W)

�
P(k)Y (k) P(k)

����¶
m∑

l=1

��
ψl(k), Y (k)ψl(k)
�

L2(W)

��¶ m
Y (k)


L2(W)
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2.5 Wannier functions

implies that the function k 7→
��TrL2(W)

�
P(k)Y (k) P(k)

��� is bounded by m‖Y ‖L2(Rd ) for

almost all k ∈ Bd . Hence, k 7→ TrL2(W)

�
P(k)Y (k) P(k)

�
is integrable and one obtains

PY P ∈K1
Γ
.

The final part follows from observing that if Y ∈K1
Γ
, then

TrL2(W)

�
Y (k)

�
= TrL2(W)

�
G(k)−1Y (k)G(k)

�

holds for almost all k ∈ Bd .

2.5 Wannier functions

A rather simple choice of a Wannier system {wA
1
, . . . , wA

m} which spans Ran PS ⊂ L2(Rd) is

to set wA
n(x) := U−1

BF
ϕA

n (cf. equation (1.5)), that is the Wannier functions are the partial

Fourier transforms of the Bloch functions ϕA
n in k. According to the theory of Fourier

transforms, there is a direct link between regularity of k 7→ ϕA
n(k) and decay of wA

n: by

a variant of the Paley-Wiener theorem [Kuc09, Theorem 2.2 (2)], wA
n decays rapidly if

and only if ϕA
n is smooth and has exponential decay if and only if ϕA

n is analytic in k
[Kuc09, Lemma 3.3]. Since Bloch functions ϕA

n are only continuous at band crossings,

the corresponding Wannier functions have polynomial decay and not exponential decay.

Hence, we have to generalize our question: is it possible to find a family

n
ψ j : Bd −→ L2(W)

�� j = 1, . . . , m
o

such that the k 7→ψ j(k) are globally analytic on Bd and the set {ψ1(k), . . . ,ψm(k)} forms

an orthonormal basis of Ran PS(k) for all k? If such an analytic family exists, then the

corresponding Wannier system {w1, . . . , wm},

w j(x) :=
�
U
−1
BF
ψ j

�
(x) =

∫

Bd

dk e− i k·(x−[x]W )ψ j(k, [x]W),

is exponentially localized by the aforementioned Paley-Wiener theorem.

2.6 Connecting analyticity to continuity: the Oka principl e

The Oka principle is a “meta-theorem” linking complex analysis and homology theory,

although its ramifications can be put more simply as [Hö90, p. 145]: “On a Stein manifold
it is ‘usually’ possible to do analytically what one can do continuously.” In a sense, a Stein

manifold X is a complex manifold that supports “sufficiently many” holomorphic functions

[Hö90, Definition 5.1.3].

The Brillouin zone Bd ∼= Td is evidently too small, because it is compact and thus cannot

support any non-trivial holomorphic functions; thus, in order to use the Oka principle, we
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3 Magnetic symmetries

have to enlarge the Brillouin zone to Bd
a := Rd

a
∗
/Γ∗ where for a > 0, we define

Rd
a
∗

:=
n

k ∈ Cd
�� ��Im k · e j

��< a, j = 1, . . . , d
o

.

Using Floquet multipliers, we see that Bd
a is isomorphic to

Td
a :=

n
z = (z1, . . . , zd) ∈ C

d
�� e−a <

��z j

��< e+a, j = 1, . . . , d
o

.

To see that Bd
a is a Stein manifold, let us remark that the map Bd

a ∋ k 7→ e i k ∈ Td
a is

holomorphic and one-to-one. Thus, if Td
a is a Stein manifold, then so is Bd

a . Since finite

carteisan products of Stein manifolds are Stein manifolds [GR04, Theorem 1 e), p. 125],

it suffices to note that the annulus T1
a =

�
z ∈ C | e−a < |z| < e+a	 is a non-compact

Riemannian surface and thus a Stein manifold [GR04, p. 134].

Now for a > 0 small enough, the projection PS(k) and the relevant band energy func-

tions EB
n (k) extend analytically from Bd to Bd

a . Hence, if we can find a family

n
ψ j : Bd

a −→ L2(W)
�� j = 1, . . . , d

o
(2.13)

of analytic functions such that {ψ1(k), . . . ,ψm(k)} is an orthonormal basis of Ran PS(k)
for each k ∈ Bd

a , then
�
ψ1|Bd , . . . ,ψm|Bd

	
forms an analytic family of functions whose

Wannier functions w j := U−1
BF
ψ j |Bd are exponentially localized. Thanks to the Oka princi-

ple, we need not prove analyticity, it suffices to show the existence of a continuous family

{ψ̃1, . . . , ψ̃m} on Bd
a . Since for a > 0 small enough, we can extend any continuous function

ψ : Bd −→ L2(W) for which ψ(k) ∈ Ran PS(k) to continuous functions on the enlarged

Brillouin zone Bd
a , it suffices to show the existence of a continuous family on Bd instead

of Bd
a . We can summarize the discussion in the following

Proposition 2.5 Let Assumptions 1.1 and 2.1 be satisfied. Then there exists an exponentially
localized Wannier system associated to PS if and only if there exists a family

n
ψ j : Bd −→ L2(W)

�� j = 1, . . . , m
o

of continuous functions forming a rank m orthonormal system of Ran PS(k) ⊂ L2(W) for
any k ∈ Bd .

3 Magnetic symmetries

In this section, we show how to associate to a large class of symmetries of

H0 =−∆+ V = (− i∇x )
2+ V ( x̂)

20



3.1 Definitions and properties

“magnetic” symmetries of HA = (− i∇A
x)

2
+ V ( x̂) where for the sake of brevity, we have

introduced the covariant derivative − i∇A
x := − i∇x − A( x̂). Throughout this section, we

assume that A is “sufficiently regular”, meaning circulations
∫
[x ,y]

A along line segments

[x , y] ⊂ Rd are well defined. Unless specifically stated otherwise, we do not assume that

the magnetic field B or the vector potential A are necessarily Γ-periodic.

3.1 Definitions and properties

To define our class of symmetries, set M to be the abelian algebra of Borel measurable

functions on Rd . Elements V ∈M define multiplication operators on L2(Rd); since ele-

ments of M need not be essentially bounded, the corresponding multiplication operators

need not be bounded, but may define unbounded operators on some suitable domain.

Now we specify the class of symmetries of interest:

Definition 3.1 (S-transform) Let R ∈ O(Rd) be an orthogonal matrix. A S-transform of
type R is a unitary or anti-unitary operator UR : L2(Rd)−→ L2(Rd) such that

(i) UR (− i∇x)UR
−1 = R(− i∇x);

(ii) UR MUR
−1 ⊆M, namely the conjugation by UR preserves the multiplicative character

of the elements in M.

A wide array of well-known symmetries are S-transforms, e. g. rotations, reflections,

translations and time-inversion. The two conditions are natural in the discussion of

Schrödinger operators: (i) S-transforms preserve the Galilean symmetry of kinetic energy

(− i∇x)
2 =−∆, i. e. [UR,∆] = 0 holds. Item (ii) ensures that UR maps a Schrödinger-type

operator −∆+ V ( x̂) onto another Schrödinger-type operator −∆+ V ′( x̂) with V ′( x̂) :=

URV ( x̂)UR
−1. If in addition the S-transform commutes with the potential,

[V, UR] = 0,

then [H0, UR] = 0 holds as well and we say UR is a symmetry of H0.
Now let us define magnetic S-transforms:

Definition 3.2 (Magnetic S-transforms) Let UR be an S-transform and A a vector potential
associated to the magnetic field B. Then the magnetic symmetry associated to UR is given by

UA
R := e

− i
∫
[0, x̂]

Â UR

where the magnetic phase is the operator of multiplication with the exponential of the line
integral of

Â := R−1(URAUR
−1)− A

along the line segment [0, x].
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3 Magnetic symmetries

Theorem 3.3 Let UR be an S-transform and let A be a vector potential for the magnetic field
B.

(i) UA
R is unitary or anti-unitary if UR is unitary or anti-unitary, respectively.

(ii) UA
R(− i∇A

x)U
A
R
−1
= R(− i∇A

x)

(iii) Assume V and A are such that H0 and HA define selfadjoint operators. Then for any
symmetry UR of H0, the associated magnetic S-transform UA

R is a symmetry of HA, i. e.

�
H0, UR

�
= 0 ⇒

�
HA, UA

R

�
= 0.

Proof (i) This follows directly from the unitarity of e
− i
∫
[0, x̂]

Â
.

(ii) To be more concise, we define λ := e
− i
∫
[0, x̂]

Â
. Then, by a simple computation, we

get
�
(− i∂x j

) , λ−1
�
= Â j λ

−1 = λ−1 Â j and thus

UA
R(− i∂ A

x j
)UA

R
−1
= λUR (− i∂ A

x j
)UR
−1λ−1

= λ
�
R(− i∇x)

�
jλ
−1− URA j( x̂)UR

−1

= λ
�
λ−1

�
R(− i∇x)

�
j +λ

−1
�
RÂ( x̂)

�
j

�
− URA j( x̂)UR

−1

=
�
R(− i∇x)

�
j +
�
RÂ( x̂)

�
j − URA j( x̂)UR

−1

=
�
R(− i∇A

x)
�

j .

(iii) This is a direct consequence of (ii) and the fact that e
− i
∫
[0, x̂]

Â
, V ∈M commute:

UA
R HA UA

R
−1
= UA

R (− i∇A
x)

2
UA

R
−1
+ UA

R V ( x̂)UA
R
−1

=
�
R(− i∇A

x )
�2
+ URV ( x̂)UR

−1

= (− i∇A
x)

2
+ V ( x̂) = HA

Remark 3.4 Note that magnetic symmetries are genuinely different from their non-mag-

netic counterpart, unless the magnetic field is compatible with the symmetry. Assume the

S-transform UR is a symmetry of H0, then we say that B is compatible with the symmetry

UR if and only if there exists a vector potential A such that

A( x̂) = R−1
�
URA( x̂)UR

−1
�

is satisfied. In that case, UR is also a symmetry of HA, namely if the magnetic field B 6= 0 is

compatible with UR, magnetic and non-magnetic symmetry coincide. Needless to say that

this is impossible by design for some symmetries, e. g. time-reversal.
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3.2 Applications

Remark 3.5 It is clear that the magnetic phase factor is not unique: we could have added

gauge transformations before and after. E. g. for any a, b ∈ Rd , the operator

e
+ i
∫
[a, x̂]

A
e
− i
∫
[b, x̂]

R−1(URA(x̂)UR
−1)

would also serve to “magnetize” S-transforms.

3.2 Applications

Now let us discuss some relevant examples:

Translations Let T : Rd −→ U
�

L2(Rd)
�

be the unitary representation of translations on

L2(Rd) via (TyΨ)(x) := Ψ(x − y) for all x , y ∈ Rd . Then for any fixed y , the operator Ty

is an S-transform of type 1 ∈ O(d). In particular, if V is Γ-periodic, then for any γ ∈ Γ, the

unitary Tγ is a symmetry of H0; this symmetry extends to the magnetic translation

T A
γ = e

− i
∫
[γ, x̂+γ]

A
e
+ i
∫
[0, x̂]

A Tγ (3.1)

which is a symmetry of HA. We note that the map T A : Γ −→ U
�

L2(Rd)
�
, γ 7→ T A

γ is not a

group representation, but a generalized projective representation of the abelian group Γ in

the sense of [MPR05]: the composition of two magnetic translations

T A
γ1

T A
γ2
= e− iΦB[ x̂ ;γ1,γ2] T A

γ1+γ2
(3.2)

is again a magnetic translation up to a phase factor that is the exponential of a magnetic

flux ΦB. Moreover, for constant magnetic fields (3.2) reduces to the usual magnetic trans-

lations [Zak64]. Evidently, if A can be chosen Γ-periodic, then magnetic and non-magnetic

translations coincide as the magnetic factor reduces to the identity.

Rotations and reflections Any R ∈ O(d) acts on L2(Rd) via (RΨ)(x) := Ψ(R−1 x). The

magnetic rotations are then defined as

R
A := e

− i
∫
[0, x̂]

Â
R

where Â= RA(R−1 · )−A. Magnetic and non-magnetic rotations coincide if and only if the

vector potential satisfies

R−1A(· ) = A(R−1 · ).

An important special case is that of the parity operator P where R= −1 ∈ O(d) and which

acts as (PΨ)(x) := Ψ(−x). If we can choose an odd vector potential, A(−x) = −A(x),
then magnetic parity coincides with ordinary parity.
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3 Magnetic symmetries

Time-reversal For a spinless particle, time inversion is implemented by complex conju-

gation

(CΨ)(x) :=Ψ∗(x).

It is an anti-unitary S-transform of type −1 ∈ O(d). Since A is a real-valued multiplication

operator, CA jC = A j holds and magnetic time-reversal symmetry CA is given by

CA := e
− i
∫
[0, x̂]
(A−(−A)) C = e

− i 2
∫
[0, x̂]

A C .

C is clearly a symmetry of H0 and thus by Theorem 3.3 magnetic time-reversal is a sym-

metry of HA, i. e.
�

CA, HA� = 0. Moreover, C2 = idL2(Rd ) and the unitarity of e
− i 2

∫
[0, x̂]

A

implies that also CA2
= idL2(Rd ). Obviously, magnetic time-reversal never coincides with

non-magnetic time-reversal unless A= 0 and thus B = 0.

3.3 Γ-periodic magnetic symmetries and the Bloch-Floquet trans form

Now we assume again that the vector potential A is Γ-periodic. This section deals with

magnetic symmetries preserving Γ-periodicity: these factor through the Bloch-Floquet

transform and the existence of such Γ-periodic symmetries induces non-trivial relations

between vector spaces associated to different fibers of the direct integral decomposition.

In particular, we explore in detail the case of magnetic time-reversal and magnetic parity.

Proposition 3.6 Let Assumption 1.1 be satisfied and define magnetic time-reversal symmetry
CA as above. Then, the following statements hold true:

(i) [CA, Tγ] = 0 for all γ ∈ Γ

(ii) Define the anti-unitary JAψ := e
− i 2

∫
[0, ŷ]

A
ψ∗ on L2(W). Then CA

BF
:= UBF CAU−1

BF
is the

anti-unitary map which acts on ψ ∈ L2(Bd)⊗ L2(W) as

�
CA

BF
ψ
�
(k) = e

− i 2
∫
[0, ŷ]

A
ψ∗(−k) = JA�ψ(−k)

�
.

(iii) The fiber hamiltonians HA(k) and HA(−k) are related via JA, i. e.

HA(k) JA = JA HA(−k)

holds for all k ∈ Bd . Moreover, if the relevant bands are separated by a gap in the sense
of Assumption 2.1, then the fiber projections PS(k) and PS(−k) are also related by JA,
i. e.

PS(k) J
A = JA PS(−k). (3.3)

holds for all k ∈ Bd .
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3.3 Γ-periodic magnetic symmetries and the Bloch-Floquet transform

Proof (i) follows trivially from the definition of CA and observing that both the complex

conjugation C and the multiplication by the phase e
− i 2

∫
[0,x]

A
commute with lattice

translations Tγ since A is Γ-periodic by assumption.

(ii) From (i), we conclude the operator e
− i 2

∫
[0,x]

A
fibers trivially in k,

UBF e
− i 2

∫
[0, x̂]

A
U
−1
BF
=

∫ ⊕

Bd

dk e
− i 2

∫
[0, ŷ]

A
,

meaning that the fiber operator is independent of k. Now the claim follows from

direct computation: for any Ψ ∈ L2(Rd), we get

�
UBFCAΨ

�
(k) =

∑

γ∈Γ

e− i k·γ �TγC
AΨ
���

W
= e
− i 2

∫
[0, ŷ]

A
∑

γ∈Γ

e− i k·γ �TγΨ
∗
���

W

= e
− i 2

∫
[0, ŷ]

A
�∑

γ∈Γ

e+ i k·γ �TγΨ
���

W

�∗

= e
− i 2

∫
[0, ŷ]

A �
UBFΨ

�∗
(−k) = JA�(UBFΨ)(−k)

�
.

Since CA
BF

is a composition of two unitary and one anti-unitary operator, it is again

anti-unitary.

(iii) If we define

HA
BF

:=

∫ ⊕

Bd

dk HA(k),

then [HA
BF

, CA
BF
] = 0 follows immediately from [HA, CA] = 0 (Theorem 3.3). In order

to prove the first part of (iii), we remark that if ϕA
n(k) is a Bloch function to EB

n (k),
then (CA

BF
ϕA

n)(k) is an eigenfunction to HA(k) with eigenvalue EB
n (−k) since

HA(k)
�
CA

BF
ϕA

n

�
(k) =

�
CA

BF
HA

BF
ϕA

n

�
(k) = e

− i 2
∫
[0, ŷ]

A �HA
BF
ϕA

n

�∗
(−k)

= e
− i 2

∫
[0, ŷ]

A�HA(−k)ϕA
n(−k)

�∗

= e
− i 2

∫
[0, ŷ]

A EB
n (−k)

�
ϕA

n

�∗
(−k)

= EB
n (−k)

�
CA

BF
ϕA

n

�
(k).

The fiberwise relation HA(k) JA = JA HA(−k) follows easily from the relation be-

tween CA
BF

and JA and the density of the basis ϕA
n(−k). Morevover, we have also

proven S(−k) =
⋃

n∈I

�
EB

n (−k)
	
⊆ S(k). Exchaning the roles of k and −k yields

that the two sets are in fact equal, S(−k) = S(k). Hence, by functional calculus and

JA2
= idL2(W), it follows

PS(k) = 1S(k)

�
HA(k)

�
= JA 1S(−k)

�
HA(−k)

�
JA = JA PS(−k) JA.
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4 The Bloch bundle

Similarly, one can prove the same result for the parity operator P .

Proposition 3.7 Let Assumptions 1.1 and 2.1 be satisfied and assume P is a symmetry of
H0. The unitary operator PA

BF
:= UBF P

AU−1
BF

acts on L2(Bd)⊗ L2(W) as

�
P

A
BF
ψ
�
(k) = ΠA�ψ(−k)

�

where ΠA is the multiplication operator e
+ i
∫
[0, ŷ]
(A(·)+A(−·)). Moreover, the fiber hamiltonian

and the spectral projection at conjugate points are related by ΠA, i. e.

HA(k)ΠA = ΠA HA(−k)

PS(k)Π
A = ΠA PS(−k)

hold for all k ∈ Bd .

4 The Bloch bundle

By the Oka principle (Theorem 2.5), we are left to prove the existence of a family of m
continuous functions ψ j : Bd −→ L2(W) which for fixed k form an orthonormal basis of

HS(k); our tool of choice is the theory of vector bundles. In that language, the central

question can be rephrased as “Is the Bloch bundle trivial?” The explanation of this phrase

will be the core of this section.

4.1 A preliminary definition

Let S be a part of the spectrum of HA which satisfies Assumption 2.1. Then the family of

projections PS(k) is well defined on Bd (i. e. it is Γ∗-periodic) and it induces a k-dependent

decomposition

L2(W)∼= Ran PS(k)⊕
�
Ran PS(k)

�⊥

into the complex vector space HS(k) := Ran PS(k) and its orthogonal complement. The

relevant subspace HS(k) has fixed dimension m = |I|. We can think of these spaces as

being glued onto the Brillouin zone Bd and the results is the

Definition 4.1 (Bloch bundle) Assume HA satisfies Assumption 1.1 and the projection PS

satisfies the Gap Condition 2.1. Then the Bloch bundle ξS =
�
ES,Bd ,πS

�
is the triple con-

sisting of the topological space

ES :=
⊔

k∈Bd

HS(k) =
n
(k,ϕ) ∈ Bd × L2(W)

�� ϕ ∈HS(k)
o
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4.2 Basic notions of vector bundle theory

where
⊔

denotes the disjoint union, the Brillouin zone Bd and the projection πS : ES → Bd

defined by

ES ∋ (k,ϕ)
πS

7−→ k ∈ Bd .

The topology on ES is generated by the basis of neighborhoods given by

U(k,ϕ)(O,ǫ) :=
n
(k′,ϕ′)

�� k′ ∈ O, ϕ′ ∈HS(k
′),
ϕ−ϕ′


L2(W)

< ǫ
o

(4.1)

where (k,ϕ) ∈ ES and O ⊂ Bd is an open neighborhood of k.

We will show in Section 4.2 that this really defines a vector bundle in the sense of Defini-

tion 4.2. Roughly speaking, it remains to show local triviality and thus, up to now, ξS is

only a Hilbert bundle [FD88].

Let us defer this technical detail for a moment and turn back to the main topic of

this paper: since the topology on the fibers π−1
S
({k}) = HS(k) is induced by that of

L2(W), the maps {ψ1, . . . ,ψm} in Proposition 2.5 can be interpreted as continuous sections
ψ j : Bd −→ ES, i. e. continuous maps which satisfy πS ◦ψ j = idBd . Hence, in the jargon

of vector bundles, Proposition 2.5 can be restated as: the existence of an exponentially

localized Wannier system is equivalent to the existence of m non-vanishing continuous

sections {ψ1, . . . ,ψm} such that for fixed k, they are an orthonormal basis of Ran PS(k).

4.2 Basic notions of vector bundle theory

In this section, we provide some basic definitions and fundamental facts from the theory of

vector bundles. For more background, we refer to the monographs [MS74, LM98, Hat09]

and the expert reader may skip ahead to Section 4.4.

The fact that the Bloch bundle ξS defines a vector bundle is actually the content of a

Lemma 4.5 saying that it verifies the conditions enumerated in the following

Definition 4.2 (Hermitean vector bundle) An rank m hermitean vector bundle ξ over X
is a triple ξ := (E , X ,π) consisting of a continuous map π : E −→ X between the topological
spaces E (the total space) and X (the base space) such that

(i) X is a d-dimensional (d <∞) CW-complex,

(ii) for all x ∈ X , the preimage Ex := π−1({x}) carries the structure of a complex vector
space,

(iii) there exists an open cover {Oα} of X and a family of homeomorphisms

hα : π−1(Oα) −→ Oα ×C
m

mapping π−1({x}) onto {x}×Cm for each x ∈ Oα, and
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4 The Bloch bundle

(iv) the transition functions gα,β := hα ◦ h−1
β

defined on the overlaps Oα,β := Oα ∩Oβ 6= ;
are continuous functions gα,β : Oα,β −→ U(m) where U(m) denotes the group of the
unitary matrices on Cm.

Compared to the standard definition, we have added point (i): the restriction to base

spaces which are also CW-complexes is necessary to have a rich classification theory of

vector bundles. In particular, up to homotopy equivalence, any compact manifold is a

CW-complex [Hat02, Corollary A.12].

The most general definition of rank m complex vector bundle requires only properties

(ii) and (iii): the former ensures that the fibers are all isomorphic to each other and

endowed with the proper structure while the latter, the existence of a local trivialization,

tells us the fibers are glued together continuously. Thus, we can locally identify a complex

rank m vector bundle with π−1(O)∼= O×Cm where O ⊆ X .

The last item in the definition, property (iv), fixes the structure group of ξ to be U(m)⊂
GL(m). This is always possible for vector bundle over a CW-complex (or more generally

over a paracompact space) and it is equivalent to the existence of a scalar product on the

fibers which varies in a continuous fashion [Hat09, Proposition 1.2]. This justifies the

adjective hermitean.

One way to analyze the structure of hermitean vector bundles is to study maps between

vector bundles which are compatible with the bundle structure: let ξ j =
�
E j , X ,π j

�
,

j = 1,2, be two hermitean vector bundles over the same base space X . An X -map is

a continuous function f : E1 −→ E2 such that the fiber restriction fx := f |π−1
1 ({x})

de-

fines a linear homomorphism between π−1
1 ({x}) and π−1

2 ({x}), i. e. it is fiber preserving.

The set of such maps is denoted by Hom(ξ1,ξ2) while we use the short-hand End(ξ) for

Hom(ξ,ξ). If f ∈ Hom(ξ1,ξ2) such that the restriction fx is an isomorphism for any

x ∈ X (which implies that ξ1 and ξ2 have same rank), then f is automatically an home-

omorphism between E1 and E2 and so it defines an X -isomorphism between ξ1 and ξ2

[Hat09, Lemma 1.1]. In this case we write ξ1 ≃ ξ2. Since isomorphic vector bundles have

the same rank we write Vecm
C
(X ) for the set of the equivalence classes of isomorphic rank

m hermitian vector bundles over X . Classification theory of vector bundles concerns itself

with the description of Vecm
C
(X ) for different m and X .

A particularly important element is the trivial vector bundle εm := (X ×Cm, X , proj1) of

rank m where the total space is just the cartesian product of base space and fiber, and the

map proj1 : X ×Cm −→ X is the canonical projection onto the first argument. Thus, we

call a rank m vector bundle ξ topologically trivial if and only if it is isomorphic to εm.

The triviality of a hermitean vector bundle ξ can be characterized in terms of sections: ξ

is trivial if and only if there exists a family of continuous sections {ψ1, . . . ,ψm} such that for

each x the vectors {ψ1(x), . . . ,ψm(x)} is an orthonormal basis for the fiber π−1({x}) = Ex

[Hat09].
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4.3 Connecting triviality to localization

4.3 Connecting triviality to localization

This criterion for triviality of vector bundles allows us to rephrase Proposition 2.5 in the

following way:

Proposition 4.3 There exists an exponentially localized Wannier system associated to PS if
and only if the associated Bloch bundle ξS is topologically trivial.

The task of Section 5 is to prove the triviality of the Bloch bundle using characteristic

classes and to discuss the limitations of this method.

Remark 4.4 In the language of vector bundles, the Oka principle [Gra58, Satz I, p. 268]

can be stated as “Two vector bundles over a Stein manifold with the same structure group
and fiber are topologically equivalent if and only if they are analytically equivalent.” Roughly

speaking, analytic bundles are those for which a family of analytic transition functions gα,β

exists.

The Grauert theorem can then be used to show that triviality of the enlarged Bloch

bundle ξS a :=
�
ES a,Bd

a ,πS a) (defined analogously to ξS over the enlarged Brillouin zone

Bd
a ) is equivalent to the existence of analytic sections (cf. Section 2.6). Since Bd is a

deformation retract of Bd
a , the Grauert theorem in conjunction with the Paley-Wiener

theorem implies Proposition 4.3.

Although this is a very well-known fact, for completeness, we will prove that ξS is a

hermitean vector bundle in the sense of Definition 4.1:

Lemma 4.5 The Bloch bundle ξS = (ES,Bd ,π) is a hermitean vector bundle of rank m = |I|.

Proof It is evident by construction that (i) and (ii) of Definition 4.2 are satisfied: indeed

Bd ≃ Td is a d-dimensional CW-complex [Hat02, Example 2.3] and π−1({k}) =HS(k) ≃
Cm. Then, to complete the proof, we need to construct local trivializations hO which

satisfy (iii) and (iv).

Let k0 ∈ Bd . Then by continuity of k 7→ PS(k), there exists a neighborhood O ⊆ Bd

of k0 such that
PS(k)− PS(k0)


L2(W)

< 1. In this neighborhood, we can define a local

trivialization via the Nagy formula [Kat95]: the operator

U(k) :=
�

1−
�

PS(k)− PS(k0)
�2
�−1/2�

PS(k)PS(k0) +
�
1− PS(k)

��
1− PS(k0)

��

is a unitary mapping between HS(k0) and HS(k), i. e. PS(k) = U(k)PS(k0)U(k)
−1. More-

over the map k 7→ U(k) is continuous in O. Now, let {χ1, . . . ,χm} be an orthonormal basis

for HS(k0) and define χ j(k) := U(k)χ j for any k ∈ O. Evidently {χ1(k), . . . ,χm(k)} defines

an orthonormal basis for HS(k) and so any point p ∈ π−1
S
(O) can be written in a unique

way as
�
k,ψc(k)

�
with k ∈ O, c = (c1, . . . , cm) ∈ C

m and ψc(k) :=
∑m

j=1
c j χ j(k) ∈HS(k).

The family of maps {hO} defined through

π−1
S
(O) ∋

�
k,ψc(k)

� hO
7−→ (k, c) ∈ O×Cm
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4 The Bloch bundle

for different open sets O ⊂ Bd , are the candidates for local trivializations from which to

build the transition functions. From its definition and the continuity of k 7→ U(k), it is clear

that hO is continuous and one-to-one. From the explicit form of h−1
O : O×Cm −→ π−1

S
(O)

h−1(k, c) 7→
�
k,ψc(k)

�
,

one concludes that also the inverse is continuous. Hence, hO is a homeomorphism and

transition functions constructed from different hOs satisfy (iv).

4.4 Magnetic symmetries and the geometry of the Bloch bundle

In this section we explore the effect of magnetic time-reversal symmetry and magnetic

parity on the global geometry of the Bloch bundle ξS. In fact, the existence of such a

symmetry induces relations between fibers on conjugate points of the Bloch bundle as

shown in Proposition 3.6. In order to formulate and prove our result, we need two more

notions from vector bundle theory.

The first is that of the pullback of a vector bundle which will turn out to be a powerful

tool in classification theory of vector bundles (cf. Section 5). Given a continuous map

f : Y −→ X between CW-complexes and a hermitean vector bundle ξ = (E , X ,π), one

can construct another vector bundle f ∗(ξ) = (E ′, Y,π′): we define a map f̃ : E ′ −→ E

fiber-wise such that for any y ∈ Y , f̃ y : π′
−1
({y}) −→ π−1

�
{ f (y)}

�
is a vector space

isomorphism. The vector bundle f ∗(ξ) is called the pullback of ξ via f and it is unique

up to isomorphism [Hat09, Proposition 1.5]. Obviously, the pullback preserves the rank

of the vector bundle.

The second notion is that of the conjugate vector bundle: given a rank m hermitean

vector bundle ξ= (E , X ,π), we can simply “forget” about the complex structure and think

of each fiber as a real vector space of dimension 2m. Thus, we obtain the underlying
real vector bundle of rank 2m denoted by R(ξ). Observe that the real vector bundle R(ξ)

and the original complex vector bundle ξ both have the same total space, base space

and projection map. The conjugate vector bundle ξ∗ = (E∗, X ,π) of ξ is defined in the

following way: it has the same underlying real vector bundle, i. e. R(ξ∗) = R(ξ), but

with “opposite” complex structure in each fiber. This means E∗ and E are identical as

topological spaces, but in E∗ the usual scalar multiplication is replaced with the conjugate

scalar multiplication C× E∗ ∋ (λ, p) 7→ λ∗p ∈ E∗ [MS74, Chapter 14].

Armed with these definitions, we can “rephrase” Proposition 3.6 as:

Theorem 4.6 Let ξS = (ES, X ,π) be the Bloch bundle associated to the relevant part S of
the spectrum of HA. Then the following statements hold true:

(i) We have ξ∗
S
≃ f ∗(ξS) where f : Bd → Bd is the continuous function defined by f : k 7→

−k.

(ii) If in addition the potential V is invariant under parity, then ξ∗
S
≃ ξS.
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Proof (i) We define the bundle ξ′
S
=
�
E ′
S
,Bd ,π′

S

�
with total space

E
′
S

:=
⊔

k∈Bd

HS(−k) =
n
(k,ϕ) ∈ Bd × L2(W)

�� k ∈ Bd , ϕ ∈ Ran PS(−k)
o

.

whose topology is generated by the family of neighborhoods given in equation (4.1)

as well as the continuous projection π′
S

: (k,ϕ) 7→ k. Then for any k ∈ Bd and

ϕ ∈HS(−k), the map (−k,ϕ) 7→ (k,ϕ) defines a continuous function f̃ : E ′
S
−→ ES

such that πS◦ f̃ = f ◦π′
S
. Moreover, f̃ restricts to the identity fiberwise, π′−1({k}) =

HS(−k) = π−1
�
{ f (k)}

�
. This proves that the triple ξ′

S
= (E ′

S
,Bd ,π′

S
) is the pullback

of the Bloch bundle by the function f , i. e. f ∗(ξS) = ξ
′
S
.

In (iii) of Proposition 3.6, we have proven JA PS(k) = PS(−k) JA which implies that

JA defines a bijection between HS(k) and HS(−k). Now let HS
∗(k) be the Hilbert

space HS(k) but endowed with the conjugate scalar multiplication λ ∗ ϕ := λ∗ϕ.

Then with abuse of notation, we can see the map JA as a linear isomorphism J :

HS
∗(k) −→HS(−k). Observing that the collection of the spaces HS

∗(k) defines the

conjugate bundle ξ∗
S
, one can define the map J̃A between ξ∗

S
and f ∗(ξS) defined by

J̃A : (k,ϕ) 7→
�
k, JA(ϕ)

�
. Obviously, J̃A is continuous and fiber preserving. Moreover,

it restricts to the isomorphism JA to any fiber, hence J̃A defines an isomorphism

between vector bundles. This proves (i).

(ii) If V is invariant under parity, then HA commutes with magnetic parity PA and from

Proposition 3.7 it follows that ΠA defines a linear isomorphism between HS(k) and

HS(−k). This implies ξS ≃ f ∗(ξS). Then (ii) follows from (i).

5 Conditions for the triviality of the Bloch bundle

In this section, we show how and when characteristic classes can be used to prove the triv-

iality of the Bloch bundle. By Proposition 4.3, the (topological) triviality of the Bloch bun-

dle is equivalent to the existence of an exponentially localized Wannier system. Whether

or not time-reversal symmetry suffices to prove triviality depends crucially on the dimen-

sion d of the Brillouin zone Bd and the rank m of the Bloch bundle ξS (which coincides

with the geometric rank of the Wannier system).

The cases d = 1 is special and will be discussed first. Indeed if d = 1, the Brillouin

zone B1 is topologically equivalent to the unit circle T1 = S1, and a classical result from

classification theory of vector bundles states that independently of m, vector bundles over

T1 are automatically trivial, cf. equation (5.2) and related comments. This is the abstract

explanation for why Kohn’s result [Koh59] works, but cannot be generalized to higher

dimension.
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5 Conditions for the triviality of the Bloch bundle

The single band case, m = 1, is also special: here, (magnetic) time-reversal symmetry

ensures the triviality in any dimension d. This can be traced back to the fact that line bun-

dles are uniquely characterized by a single topological invariant, namely the first Chern

class. By Theorem 5.4, the first Chern class vanishes in the presence of time-reversal sym-

metry. To our knowledge, the case m = 1 is the only one where a constructive proof can

be used to show triviality of ξS (cf. Section 5.1).

In all remaining cases, one has to check whether the stable rank condition is met: if

d ¶ 2m, the vanishing of all Chern classes implies the triviality of the vector bundle by

Peterson’s classification theorem. Explicit counter examples (e. g. the one presented in

Section 5.7) show that d ¶ 2m is not a technical, but an essential condition. Indeed,

vector bundles with unstable rank (d > 2m) can be non-trivial even if all Chern classes

vanish. This means studying characteristic classes of vector bundles with unstable rank is

insufficient to ensure triviality, and other methods need to be employed.

5.1 The case m= 1: a constructive proof

We start analyzing Bloch bundles ξS of rank 1 which means that the relevant part of the

spectrum S is covered by a single isolated energy band. In this case the triviality of ξS can

be proven constructively by adapting the arguments of Helffer and Sjöstrand [HS89] to

our case where a zero flux magnetic fields is present.

Proposition 5.1 Assume PS has geometric rank 1. Then for any d, the Bloch bundle ξS is
trivial.

Proof Due to Proposition 2.5 it suffices to show the existence of a continuous L2(W)-

valued function ψ : Bd −→ ES such that ψ(k) ∈ Ran PS(k) and
ψ(k)


L2(W)

= 1 hold

for all k ∈ Bd . We will construct such a function inductively over the dimension d. For

convenience, we identify continuous functions f on Bd with functions on [−1/2,+1/2]d

which satifsy f |k j=+1/2 = f |k j=−1/2 for any j = 1, . . . , d.

Since [0,+1/2]d ⊂ Bd is contractible, we can find a local section ψ(0) : [0,+1/2]d → ES.

Moreover, we can assume without loss of generality that e
i
∫
[0, ŷ]

A
ψ(0)(0) is real, namely

ψ(0)(0) = JA�ψ(0)(0)
�
.

Then, the function

φ(1)(k) :=

(
ψ(0)(k) k ∈ [0,+1/2]d

JA�ψ(0)(−k)
�

k ∈ [−1/2, 0)× {0}d−1

extends ψ(0) continuously to [−1/2,+1/2] × [0,+1/2]d−1. As PS(−k)JA = JAPS(k), we

have φ(1)(k) ∈ Ran PS(k) on the domain of φ(1). Observing that the Γ∗-periodicity of
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5.1 The case m= 1: a constructive proof

k 7→ PS(k) implies that the subspaces Ran PS(+1/2, 0) and Ran PS(−1/2, 0) coincide, the

functions φ(1)(+1/2, 0) and φ(1)(−1/2, 0) belong to the same 1-dimensional subspace and

differ only by a phase, φ(1)(+1/2, 0) = e iθ1 φ(1)(−1/2, 0). Hence, the function

ψ(1)(k) := e− iθ1k1 φ(1)(k)

is evidently continuous on k ∈ [−1/2,+1/2] × [0,+1/2]d−1 and agrees at k = (±1/2, 0).

Hence, we have extended the local section ψ(0) : [0,+1/2]d → ES to a local section ψ(1) :

B1 × [0,+1/2]d−1 → ES. From the definition of φ(0) and a simple computation, it follows

that

ψ(1)(k1, 0) = JA�ψ(1)(−k1, 0)
�
.

Now let us assume we have found a continuous map ψ( j) : B j × [0,+1/2]d− j → ES for

2¶ j ¶ d − 1 which satisfies

ψ( j)(k, 0) = JA�ψ( j)(−k, 0)
�

for any k := (k1, . . . , k j) ∈ B
j. As before, we start defining a new function

φ( j+1)(k) :=

(
ψ( j)(k) k ∈ B j × [0,+1/2]d− j

JA�ψ( j)(−k)
�

k ∈ B j × [−1/2, 0)× {0}d− j−1

which extends ψ( j) continuously to B j × [−1/2,+1/2] × [0,+1/2]d− j . As before, using

dim Ran PS(k) = 1, the Γ∗-periodicity of PS(k) and JAPS(k) = PS(−k)JA, one deduces

φ( j+1)(k,+1/2, 0) = e iθ j+1(k)φ( j+1)(k,−1/2, 0).

Moreover, the assumptions on ψ( j) force θ j+1 : R j → R to be continuous and to satisfy

βi(k) := θ j+1(k1, . . . , ki − 1, . . . , k j)− θ j+1(k1, . . . , ki , . . . , k j) ∈ 2πZ for all i = 1, . . . , j. A

straightforward computation shows

e− iθ j+1(k) φ( j+1)(k,+1/2, 0) = φ( j+1)(k,−1/2, 0) = JA�φ( j+1)(−k,+1/2, 0)
�

= e− iθ j+1(−k) JA�φ( j+1)(−k,−1/2, 0)
�

= e− iθ j+1(−k) (JA)2
�
ψ( j)(k, 1/2, 0)

�

= e− iθ j+1(−k) φ( j+1)(k,+1/2, 0),

and thus β0(k) := θ j+1(k)− θ j+1(−k) ∈ 2πZ. Finally, the continuity of β0 and β(0) = 0

prove that e− iθ j+1 is an even function, i. e. θ j+1(k) = θ j+1(−k)+2πZ. Similarly, one finds

that βi is continuous and βi(0, . . . , ki = 1/2, . . . , 0) = 0 which implies that θ j+1(k1, . . . , ki −

1, . . . , k j) = θ j+1(k1, . . . , ki , . . . , k j)+2πZ for all i = 1, . . . , j. In other words, e− iθ j+1 : B j →

R is continuous.

33



5 Conditions for the triviality of the Bloch bundle

The function

ψ( j+1)(k) := e− iθ j+1(k)k j+1 φ( j+1)(k)

is evidently continuous on k = (k, k j+1, k′) ∈ B j× [−1/2,+1/2]× [0,+1/2]d− j−1 and agrees

at k = (k,±1/2, 0). Hence, ψ( j+1) defines a continuous map on B j+1 × [0,+1/2]d− j−1.

Moreover, from the definition of φ( j+1) and the parity of θ j+1, it follows after a simple

computation that

ψ( j+1)(k, k j+1, 0) = JA�ψ( j+1)(−k,−k j+1, 0)
�
.

This concludes the proof since after d inductive steps one has obtained a continuous

section ψ : Bd −→ ES.

5.2 Chern classes and conditions for triviality

Classifying the set of non-isomorphic rank m hermitian vector bundles over a given CW-

complex X is extremely difficult and usually beyond reach. One common strategy to

extract partial information on the geometry is to study topological invariants called char-
acteristic classes [MS74]. For hermitean vector bundles, the relevant characteristic classes

are called Chern classes (see below for details). Unfortunately, Chern classes do not char-

acterize bundles completely, unless m = 1. However, we are less ambitious here, all we

would like to know is whether Chern classes can be used to determine whether or not

a bundle ξ is trivial, i. e. whether ξ ≃ εm ∈ Vecm
C
(X ). A classical result by Peterson

[Pet59] tells us that knowing all Chern classes suffices to distinguish between trivial and

non-trivial bundles, provided that they have stable rank:

Theorem 5.2 ([Pet59]) Let ξ = (E , X ,π) be a rank m hermitean vector bundle over the
CW-complex X of finite dimension d which satisfies the following conditions:

(i) ξ is stable, namely d ¶ 2m.

(ii) The only torsion in H2 j(X ,Z) is relatively prime to ( j− 1)!.

Then the vector bundle ξ is trivial if and only if c j(ξ) = 0 for all j = 1, . . . , ⌊d/2⌋ where
c j(ξ) ∈ H2 j(X ,Z) denotes the j-th Chern class of ξ.

As we will see below, the vanishing of the Chern classes is a necessary condition for the

trivialitiy of a vector bundle, but Peterson’s theorem tells in what situations this condition

is also sufficient.

The proof of this theorem relies on a lot of tools from algebraic geometry and is beyond

the scope of this work. We refer the interested reader to the original publication [Pet59].

34



5.2 Chern classes and conditions for triviality

Cohomology In order to apply Peterson’s theorem to the Bloch bundle, we need to ver-

ify condition (ii) in the assumptions, that is we need to know more about the integer

cohomology groups associated to the torus.

We will denote the j-th integer cohomology (abelian) group associated to a CW-complex

X by H j(X ,Z) (the basic notions are covered in standard textbooks of algebraic topology,

e. g. [Hat02]). It is customary to define H0(X ,Z) := Z⊕g where g is the number of

path-connected components in X . The integer cohomology ring is by definition the direct

sum

H•(X ,Z) :=

∞⊕

j=0

H j(X ,Z) (5.1)

endowed with the cup product⌣. The Brillouin zone Bd is topologically equivalent to the

torus Td and the cohomology ring

H•(Bd ,Z) ≃
∧

Z

(α1, . . . ,αd )

has the structure of an exterior algebra over Z generated by finite products

α j1 ⌣ · · ·⌣ α jk , 1¶ j1 < . . . < jk ¶ d,

of α jl ∈ H1(Bd ,Z) [Hat02, Example 3.15]. In particular this means that α j ⌣ αk =

−αk ⌣ α j for j 6= k and α j ⌣ α j = 0. Hence, H j(Bd ,Z) = {0} follows if j > d and

H j(Bd ,Z) = Z⊕n(d, j) is the direct sum of n(d, j) = d!/j!(d− j)! copies of Z if 0 ¶ j ¶ d. This

implies the non-trivial groups in the integer cohomology ring are all torsion free, i. e. all

elements are of infinite order, and the cohomology of the Brillouin zone satisfies condition

(ii) of Peterson’s theorem. Hence, we obtain the following Corollary:

Corrolary 5.3 Assume the Bloch bundle ξS verifies the stable rank condition, d ¶ 2m. Then
ξS is trivial if and only if all Chern classes vanish, i. e. c j(ξS) = 0 for any j = 1, . . . , ⌊d/2⌋.

Chern classes We conclude this section with a brief introduction to Chern classes, the

interested reader may find more material in [MS74, LM98]. The notion of pullback bundle

introduced in Section 4.2 will play a crucial rôle: since pullbacks of isomorphic bundles

are themselves isomorphic, any f : X → Y induces a map f ∗ : Vecm
C
(Y ) → Vecm

C
(X ) (the

pullback preserves the rank and reverses the order of X and Y ). In particular, pullbacks

of trivial bundles are still trivial.

Furthermore, the structure of the pullback bundle depends only on the homotopy class

of f : if f , g : X → Y are homotopic, then f ∗(ξ) ≃ g∗(ξ) holds and the two pullback

bundles represent the same element in Vecm
C
(X ). This gives rise to the possibility to study

Vecm
C
(X ) in terms of homotopy invariants.
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5 Conditions for the triviality of the Bloch bundle

All rank m vector bundles over CW-complexes can be seen as pullbacks of the so-called

rank m universal vector bundle ξm
u
=
�
Em

u
, Gm
C

,πm
u

�
[Hat09, Chapter 1.2]. It turns out that

any rank m bundle ξ over a CW-complex X can be written as a pullback of the universal

vector bundle of rank m with respect to a classifying map f : X → Gm
C

, that is f ∗(ξm
u
)≃ ξ.

As mentioned before, pullbacks of homotopic maps yield isomorphic bundles and hence,

this construction only depends on the homotopy class [ f ] ∈
�

X , Gm
C

�
. In fact, there exists

an isomorphism between
�

X , Gm
C

�
and Vecm

C
(X ) via [ f ] 7→ f ∗(ξm

u
) [Hat09, Theorem 1.16]

which we can use to classify Vecm
C
(X ) by studying

�
X , Gm
C

�
.

While studying
�

X , Gm
C

�
for general CW-complexes X is out of reach, in case X = B1 ≃

T1, there is only the trivial homotopy class,

�
B

1, Gm
C

�
= π1

�
Gm
C

�
= {0}, (5.2)

which implies all complex vector bundles over B1 are trivial.

The second ingredient are topological invariants of the base space Gm
C

of the universal

bundle. This space is constructed as a direct limit of a sequence of spaces: let m ¶ k be

two non-negative integers and define the space G(m,k)
C of m-dimensional subspaces of Ck

which can be seen as the set of m-dimensional hyperplanes passing through the origin of

Ck. Any G(m,k)
C

can be endowed with the structure of a finite CW-complex, making it into

a compact manifold of dimension 2m(k−m) called Grassmann manifold. The inclusions

Ck ⊂ Ck+1 ⊂ . . . yields inclusions G(m,k)
C ⊂ G(m,k+1)

C ⊂ . . ., and we can equip

Gm
C

:=

∞⋃

k=m

G(m,k)
C

with the direct limit topology. The resulting paracompact space Gm
C

is then the set of

m-dimensional subspaces of C∞.

The cohomology ring H•(Gm
C

,Z) ≃ Z[c1, . . . , cm] can be seen as a ring of polynomi-

als with integer coefficients and m generators. These generators c j ∈ H2 j(Gm
C

,Z) are

called universal Chern classes and there are no polynomial relationships between them

(cf. [Hat09, Theorem 3.9] or [MS74, Theorem 14.5]).

The Chern classes of a general vector bundle ξ are constructed as follows: let f : X →
Gm
C

be any map such that f ∗(ξm
u
) ≃ ξ. Then for any j, the f ∗ : H j(Gm

C
,Z)→ H j(X ,Z) are

homomorphisms between the cohomology groups. We now define the j-th Chern class of
ξ as

c j(ξ) := f ∗(c j) ∈ H2 j(X ,Z), j = 1,2, . . . . (5.3)

A closer inspection of the definition of f ∗ reveals that it only depends on the homotopy

class of f , and thus isomorphic bundles have the same family of Chern classes.

Because trivial vector bundles ξ ≃ εm can be seen as pullbacks of constant maps f , the

associated homomorphism f ∗ is trivial. Hence, Chern classes of trivial vector bundles are
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5.3 Vanishing of odd Chern classes

trivial, c j(ξ) = f ∗(c j) = 0. In this sense, Chern classes can be used as a measure of the

“non-triviality” of a vector bundle.

5.3 Vanishing of odd Chern classes

From their very definition, Chern classes are functorial objects: given a rank m vector

bundle ξ over X and a continuous function f : Y → X , the Chern classes of the two vector

bundles ξ and f ∗(ξ) are related by

c j

�
f ∗(ξ)

�
= f ∗

�
c j(ξ)

�
, j = 1, . . . , m, (5.4)

where on the right f ∗ denotes the induced homomorphism between cohomology groups

f ∗ : H2 j(X ,Z)→ H2 j(Y,Z).

Furthermore, there is a relation between the Chern classes of a bundle ξ and its con-

jugate ξ∗: up to a sign, the two must agree, i. e. c j(ξ
∗) = (−1) j c j(ξ) holds for any

j = 1, . . . , m [MS74, Lemma 14.9].

These two facts can be combined for the Bloch bundle ξS: in view of Theorem 4.6 (i),

the conjugate bundle ξ∗
S

is the pullback of the Bloch bundle ξS with respect to the map

f : Bd → Bd , k 7→ −k. Hence, its Chern classes satisfy

f ∗
�
c j(ξS)

�
= (−1) j c j(ξS), j = 1, . . . , m. (5.5)

As we will see, this will imply c j(ξS) = 0 if j is odd. The argument is very similar, but

slightly more elaborate than in the case of parity: in the presence of parity symmetry, the

strong relation f ∗(ξS)≃ ξS implies

c j(ξS) = c j

�
f ∗(ξS)

�
= c j(ξ

∗
S
) = (−1) j c j(ξS)

for all j = 1, . . . , m. If j is odd, this implies 2c j(ξS) = 0. Since the cohomology groups of

the torus are all torsion free, we conclude c j(ξS) = 0.

Even without parity symmetry, (magnetic) time-reversal symmetry of HA suffices to

ensure the triviality of the odd Chern classes.

Theorem 5.4 The odd Chern classes associated to the Bloch bundle ξS are trivial, i. e.

c2 j−1(ξS) = 0

holds for all j = 1, . . . , ⌊m/2⌋

Proof In spirit, the proof is the same as for parity, we only need to take the explicit form

of f ∗ into account and know more about the relation between homology and cohomology

of Bd .
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5 Conditions for the triviality of the Bloch bundle

We will always identify Bd with Td . If d = 1, the homology group can be computed

explicitly [Hat02, Example 2.2 and Theorem 2A.1]:

H j(B
1,Z) =

(
Z j = 0,1

{0} j > 1

Let v (vertex) and ℓ (loop) be the generators of H0(B
1,Z) and H1(B

1,Z), respectively.

The map g : B1→ B1 defined by g : k 7→ −k induces an homomorphisms of homological

groups g∗ : H j(B
1,Z)→ H j(B

1,Z) defined on the generators by g∗(v) = v and g∗(ℓ) =−ℓ.
The first equality comes from the (arbitrary) identification of the vertex v with the point

k = [0] ∈ B1 and the second is a consequence of the fact that the map g reverses the

orientation of the fundamental loop ℓ. To compute the homology for higher dimensional

tori, one can use the Künneth formula [Hat02, Theorem 3B.6]: it provides an isomorphism

H j(B
d ,Z)≃

⊕

n∈N

�
Hn(B

d−1,Z)⊗Z H j−n(B
1,Z)

�
.

between abelian groups and by recursion, one obtains that the homology of Bd is torsion

free. In particular, one computes H j(B
d ,Z) ≃ Zn(d, j) where n(d, j) = d!/j!(d− j)! for all

0¶ j ¶ d and n(d, j) is zero if j > d. The n(d, j) generators of H j(B
d ,Z) can be obtained

by all the possible tensor products ℓ⊗· · · ⊗ ℓ⊗ v⊗· · · ⊗ v of j copies of ℓ end d− j copies

of v. Now let f : Bd → Bd defined as f := g × · · · × g. The induced homomorphism

f∗ : H j(B
d ,Z) → H j(B

d ,Z) acts as f∗ := g∗ × · · · × g∗, and a simple computation using

generators shows

f∗(α) = (−1) j α (5.6)

for all α ∈ H j(B
d ,Z).

The Universal Coefficient Theorem [Hat02, Theorem 3.2] relates homology and coho-

mology of the Brillouin zone Bd : the cohomology groups

H j(Bd ,F)≃ HomF
�
H j(B

d ,F),F
�
, F = Z,Q,R,C, (5.7)

are isomorphic to the set of the F-module homomorphisms on H j(B
d ,F) with values in

F. Then for F = Z and for each j = 0,1, . . ., we can write the action of b ∈ H j(Bd ,Z) on

α ∈ H j(B
d ,Z) via the Kronecker pairing 〈 · , · 〉 : H j(Bd ,Z)× H j(B

d ,Z) −→ Z defined by

〈b,α〉 := b(α). In view of isomorphism (5.7), the pairing is exact, i. e. we have 〈b,α〉 = 0

for all α ∈ H j(B
d ,Z) if and only if b = 0. The other important property of the Kronecker

pairing we will use is its functoriality: if h : Bd → Bd is any continuous map, then



h∗(b),α

�
=



b,h∗(α)
�
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5.4 The low-dimensional case: d = 1,2,3

holds where h∗ and h∗ are the induced homomorphisms in cohomology and homology

[Die08, Proposition 17.4.2]. Now if we plug equations (5.5) and (5.6) into the Kronecker

pairing, we obtain

(−1) j 
c j(ξS),α
�
=



f ∗
�
c j(ξS)

�
,α
�
=


c j(ξS), f∗(α)

�
= (−1)2 j 
c j(ξS),α

�

=


c j(ξS),α

�

for any α ∈ H2 j(B
d ,Z) and j = 1, . . . , m. Hence, if j is odd, this means



c j(ξS),α

�
= 0

from which we conclude c j(ξS) = 0.

5.4 The low-dimensional case: d = 1, 2, 3

We can apply Theorem 5.4 to deduce the triviality of the Bloch bundle ξS at least in the

low-dimensional case.

Corrolary 5.5 If d = 1,2,3, the Bloch bundle ξS is trivial independently of m.

Proof If m = 1, then the claim follows for any d > 0 from Proposition 5.1. If d = 1 and

m arbitrary, this is a consequence of equation (5.2).

If d = 2,3 and m ¾ 2, the stable rank condition is satisfied and Corollary 5.3 applies.

Due to the low dimensionality of the base space, only the first Chern class can be non-

trivial. Time-reversal symmetry forces c1(ξS) = 0 (Theorem 5.4) and we conclude that

the Bloch bundle is trivial.

5.5 The case d = 4: condition for the triviality

To ensure the triviality of the Bloch bundle ξS for d = 4 and m ¾ 2, we need to control

the second Chern class, i. e. we need to check whether c2(ξS) = 0. The purpose of this

section is to give an equivalent criterion which is, in principle, accessible to numerical

computation.

Differential geometry of the Bloch bundle Since Bd has the structure of a smooth man-

ifold, the Bloch bundle can also be treated from a differential geometric point of view.

Here, the geometry of ξS can be studied by means of a given connection and its related

curvature. We refer to [KN96, CCL00] for more details. A connection is a collection of

local matrix valued 1-forms associated to some open cover of Bd which are glued together

by means of transition functions of ξS. Since ξS is a hermitean vector bundle, connections

take values in u(m), the Lie algebra of U(m). Of special interest is the Berry connection
A := (Aαβ) (we denote the Lie algebra indices with Greek letters), which in local coordi-

nates is given by

Aαβ(k) :=

d∑

j=1

A
( j)
αβ
(k) dk j , A

( j)
αβ
(k) :=



ψα(k),∂k j

ψβ (k)
�

L2(W)
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5 Conditions for the triviality of the Bloch bundle

where {ψ1(k), . . . ,ψm(k)} is any locally smooth basis for Ran PS(k), e. g. the Bloch func-

tions. The fact that the above expression defines a connection follows from the transfor-

mation rule of the local quantities A
( j)
αβ
(k) (cf. [Pan07]).

The Berry curvature K := (Kαβ) can be derived from the Berry connection A by means

of the structure equation

K = dA+A∧A.

As it is evident from the above equation, K is a collection of local u(m) valued 2-forms.

Functions of the Berry curvature provide a perhaps simplified measure of some aspects

of the geometry; the total (differential) Chern class

c̃(ξS) := det
�

1+ i

2π
K
�
=: 1+ c̃1(ξS) + . . .+ c̃m(ξS) (5.8)

is the most prominent example. It is defined in terms of the determinant in the Lie alge-

bra indices and yields a sum of even degree elements c̃ j(ξS) ∈ H2 j
dR
(Bd) of the de Rahm

cohomology. The first two non-trivial terms can be explicitly computed to be

c̃1(ξS) =
i

2π
tr K (5.9)

c̃2(ξS) =
1

8π2

�
tr
�
K ∧ K

�
− tr K ∧ tr K

�
=

1

8π2
tr
�
K ∧ K

�
+

1

2
c̃1(ξS)∧ c̃1(ξS) (5.10)

where tr denotes the trace with respect to the Lie algebra indices. Interestingly, for a

given Bloch bundle ξS the definition of the c̃ j(ξS) is independent (in the sense of de

Rahm equivalence classes) of the choice of curvature. A short computation using the

Berry connection yields that we can express the first differential Chern class in terms of

PS and its derivatives: the local expression is given as

c̃1(ξS) =
i

2π

∑

1¶l< j¶d

TrL2(W)

�
Q̃l j(PS)

�
dkl ∧ dk j , (5.11)

where

Q̃l j(PS)(k) := PS(k)
�
∂kl

PS(k),∂k j
PS(k)

�
PS(k).

One can find an expression for c̃2(ξS) which has a similar structure. As will be explained

below, in the present context c̃1(ξS) = 0 and we will only need to compute the first term

in equation (5.10). Then another straightforward computation yields

c̃2(ξS) =
1

8π2
tr
�
K ∧ K

�
=

1

(2π)2
TrL2(W)

�
W̃S

�
dk, (5.12)

where dk := dk1 ∧ dk2 ∧ dk3 ∧ dk4 is the normalized volume form on Bd and locally

W̃S(k) := Q̃12(PS)(k) Q̃34(PS)(k)− Q̃13(PS)(k) Q̃24(PS)(k) + Q̃14(PS)(k) Q̃23(PS)(k).
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5.5 The case d = 4: condition for the triviality

Link between differential and topological Chern classes Since Bd is a smooth manifold,

the de Rahm Theorem [CCL00, Theorem 4.3] states that Hk
dR
(Bd) ≃ Hk(Bd ,R). Further-

more, the canonical injection Z ,→ R induces a homomorphism

 : Hk(Bd ,Z) −→ Hk(Bd ,R) ≃ Hk
dR
(Bd).

As the homology of Bd is torsion free, we deduce from the Universal Coefficient Theorems

for homology and cohomology that Hk(Bd ,R) ≃ Hk(Bd ,Z) ⊗ R, which implies that 

is injective. The Chern-Weil Theory [MS74, Appendix C] proves the relevant fact that 

relates topological and differential Chern classes, i. e. c̃ j(ξS) = 
�
c j(ξS)

�
. The injectivity

of  assures that c j(ξS) = 0 if and only if c̃ j(ξS) = 0. In the following we will refer to

c̃ j(ξS) is the differential representative of the j-th Chern class.

Criteria for triviality Now we come back to the case d = 4 and m¾ 2. Then the differen-

tial Chern class c̃1(ξS) = (c1(ξS)) = 0 vanishes by Theorem 5.4 which assures c1(ξS) = 0.

This justifies the first equality in (5.12). Hence, we have the following criterion for the

triviality of the Bloch bundle:

Theorem 5.6 Assume d = 4 and m¾ 2. Then the Bloch bundle ξS is trivial if and only if
∫

B4

dk TrL2(W)

�
W̃S(k)

�
= 0. (5.13)

Proof By Corollary 5.3 and Theorem 5.4 the triviality of the Bloch bundle is equivalent

to c2(ξS) = 0. In view of the relation between differential and topological Chern classes,

c̃2(ξS) = 0 is equivalent to c2(ξS) = 0. To complete the proof we need only shows that

(5.13) is equivalent to the vanishing of c̃2(ξS).

Since (5.12) differs from (5.13) only by a constant, we obtain

0=

∫

B4

c̃2(ξS) =


c̃2(ξS), [B

4]
�

where in the second equality we have rewritten the integration over B4 as the Kro-

necker pairing between H4(B4,R) ≃ H4
dR
(Bd) and H4(B

4,R) ≃ H4(B
4,Z) ⊗ R. The so-

called fundamental class [B4] denotes the cycle associated to the orientable manifold B4

which generates H4(B
4,Z). The Universal Coefficient Theorem (homology and cohomol-

ogy of B4 are torsion free) assure that the pairing is exact (cf. equation (5.7)), namely

c̃2(ξS), [B

4]
�
= 0 if and only if c̃2(ξS) = 0 and this concludes the proof.

The quantity on the right-hand side of equation (5.13) (even if it is non-zero) is known

as the instanton charge in physics. In view of equation (5.10), up to a factor it is equal to

ch2(ξS) =−
1

2
c̃1(ξS)

2+ c̃2(ξS) [AHS78] and ξS is trivial if and only if it has zero instanton

charge.
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5 Conditions for the triviality of the Bloch bundle

5.6 Partially localized Wanier systems

When d ¾ 5, we are generally unable to prove the triviality of the Bloch bundle. Never-

theless, assuming stable rank, we can at least ensure the existence of l ¶ m continuous

linearly independent sections {ψ1, . . . ,ψl}. By usual arguments (the Oka principle and

the Paley-Wiener Theorem), this translates immediately into the existence of l linearly

independent and exponentially localized Wannier functions which generate a partially
localized Wannier system for Ran PS.

Our analysis is based on two standard results concerning classification theory of vector

bundles. The first is a classical result from K-theory:

Lemma 5.7 (Theorem 1.2, Chapter 9 of [Hus66]) Let ξ = (E , X ,π) be a rank m hermi-
tian vector bundle over a CW-complex of dimension d. Assume that ξ satisfies the stable rank
condition, i. e. σ = m− ⌊d/2⌋ ¾ 0. Then

ξ ≃ ξ′⊕ εσ, (5.14)

namely ξ splits into the direct sum of a rank σ trivial vector bundle εσ and a non-trivial part
ξ′.

In other words, the above result states that there exists an isomorphism between Vecm
C
(X )

and Vecm−σ
C
(X ) provided that σ ¾ 0. Moreover, according to the stability property of

Chern classes [MS74, Lemma 14.3], c j(ξ) = c j(ξ
′) ∈ H2 j(X ,Z).

The second result is a consequence of obstruction theory:

Lemma 5.8 (Theorem 22 of [LM98]) Let ξ = (E , X ,π) be a rank m hermitian vector bun-
dle over a CW-complex of dimension d = 2m. If cm(ξ) = 0 holds in H2m(X ,Z), then there
exists a continuous non-vanishing section.

Combining Lemma 5.7 and Lemma 5.8 we can give a proof of Theorem 1.8:

Proof (Theorem 1.8) By the Oka principle, the existence of l continuous linearly inde-

pendent sections {ψ1, . . . ,ψl} already implies the existence of l analytic sections which

for fixed k form an orthonormal system. Then, according to the Paley-Wiener Theorem,

the preimage of {ψ1, . . . ,ψl} under UBF is defines l exponentially localized generators of

the Wannier system associated to PS.

(i) If σ = 0, i. e. in the unstable rank regime and in the borderline case d = 2m, nothing

needs to be proven. Hence, assume σ > 0. The splitting (5.14)

ξS ≃ ξ
′
S
⊕ εσ

assures the existence of l = σ continuous and independent sections for the Bloch

bundle ξS.
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5.7 Failure of the Chern classes approach in the unstable case

(ii) If d = 4k+ 2, then ξ′
S

is a rank d/2 = 2k+ 1 vector bundle. Since the Chern classes

of ξS and ξ′
S

agree and c2k+1(ξS) = 0 by Theorem 5.4, we invoke Lemma 5.8 to

conclude that there exists at least one more continuous section in ξS, i. e. l = σ+ 1

in total.

5.7 Failure of the Chern classes approach in the unstable cas e

The purpose of this section is to construct an explicit example of a vector bundle over

Bd which is non-trivial but whose Chern classes all vanish. In view of Peterson’s theorem,

d = 5 and m= 2 is the simplest possible case. Such an example proves that in the unstable

rank regime, it is not possible to ensure triviality of the Bloch bundle simply by showing

the vanishing of all Chern classes. The construction of this vector bundle is based on

the ideas of Ekendahl [Eke10], but since his original construction makes use of a lot of

advanced concepts of algebraic topology, we will sketch a simpler proof here.

The idea is to define the vector bundle over B5 as pullback over a non-trivial rank

2 bundle over S5. Due to the particularly simple structure of the cohomology ring of

spheres, the vector bundle has trivial Chern classes by design.

Up to isomorphism, rank m hermitean vector bundles over Sd are uniquely determined

by how the local trivializations over Northern and Southern hemispheres are glued to-

gether at the equator by means of a transition function [Hat09, Proposition 1.11]. Topo-

logically, the equator is isomorphic to Sd−1 and we have to study the homotopy class

[Sd−1, U(m)] which is the homotopy group πd−1

�
U(m)

�
. These homotopy groups have

been computed explicitly [Hat02, Example 4.53], and for d = 5 and m= 2, we obtain

Vec2
C
(S5)≃ [S4, U(2)] = π4

�
U(2)

�
= Z2.

Hence, up to isomorphism there are only two rank 2 bundles over S5, one is trivial, the

other one is not; we denote the non-trivial vector bundle over S5 by η.

Furthermore, all Chern classes of all bundles over S5 are trivial, indeed the Universal

Coefficient Theorem for homology [Hat02, Theorem 3A.3] shows that with the exception

of j = 0,5, the cohomology groups with respect to any unital abelian ring R of S5 are

trivial,

H j(S5,R) =

(
{0} j ∈ N \ {0,5}

R j = 0,5
.

This implies H2(S5,R) and H4(S5,R) are trivial and thus, the Chern classes of any vector

bundle over S5 vanish.

Any continuous map g : B5→ S5 gives rise to a pullback vector bundle g∗(η) over B5. By

functoriality, the Chern classes of the pullback bundle are trivial,

c j

�
g∗(η)

�
= g∗

�
c j(η)

�
= g∗(0) = 0, j = 1,2.
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5 Conditions for the triviality of the Bloch bundle

Lastly, we need to show that there exists a g such that the pullback bundle g∗(η) is non-

trivial. In other words, we need to study the homotopy classes [B5,S5] ≃ Z. It turns

out that these homotopy classes are indexed by the so-called degree of their elements and

the pullback of a degree 1 map yields a non-trivial bundle. For an orientable manifold

the degree of a map [Hir76, Chapter 5] is a generalization of the concept of winding

number; for our purposes we can simply state that g has degree 1 if and only if the

induced homomorphism g∗ : H5(B
5,Z)→ H5(S

5,Z) is an isomorphism.

The last ingredient needed to prove the non-triviality of g∗(η) is the notion of charac-
teristic classes which generalize the concept of Chern classes [Hus66, Chapter 20]. They

are maps γ j that associate to any rank m bundle ξ over X an element of H j(X ,R) where

R is an abelian unital ring which are functorial in the following sense: for any f : X → Y
the relation γ j ◦ f ∗ = f ∗ ◦ γ j holds. Here f ∗ on the left is the pullback and maps Vecm

C
(Y )

to Vecm
C
(X ) while the f ∗ on the right is the induced homomorphism between the j-th

cohomology groups. The set of the j-th characteristic classes with coefficients R is in one-

to-one correspondence with elements of H j(Gm
C

,R): if f : X → Gm
C

is such that its pullback

of the universal vector bundle is isomorphic to ξ, then we obtain γ j by pulling back el-

ements of H j(Gm
C

,R) with respect to f [Hus66, Chapter 20]. Since trivial bundles can

be seen as the pullback with respect to a constant map, the induced homomorphisms are

trivial. Thus, a vector bundle is trivial if and only if there are no non-trivial characteristic

classes.

Coming back to the construction, this implies for some ring R (indeed for R = Z2)

there exists a non-trivial characteristic class

γ5 : Vec2
C
(S5) −→ H5(S5,R)

which detects the non-triviality of the bundle η by γ5(η) 6= 0 (i. e. the obstruction). Using

once again that the integer homology groups of S5 and B5 are torsion free, we obtain from

the Universal Coefficient Theorem that

H5(X ,R) ≃ Hom
�
H5(X ,Z),R

�
, X = S5,B5.

In view of this identification and the fact that g has degree 1, it is easy to see that the

induced homomorphism g∗ defines an isomorphism between the two cohomology groups

via

H5(S5,R) ∋ α 7→ g∗(α) := α ◦ g∗ ∈ H5(B5,R)

and we conclude g∗ ◦ γ5 : Vec2
C
(B5) → H5(B5,R) is a non-trivial characteristic class for

the vector bundle g∗(η). This means the pullback bundle g∗(η) with respect to degree 1

maps is non-trivial.
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