Computing in the fractal cloud: modular generic solvers for SAT and Q-SAT variants. - Archive ouverte HAL Access content directly
Conference Papers Year : 2012

Computing in the fractal cloud: modular generic solvers for SAT and Q-SAT variants.

Denys Duchier
  • Function : Author
  • PersonId : 926109
CA
Jérôme Durand-Lose
Maxime Senot
  • Function : Author
  • PersonId : 867038

Abstract

Abstract geometrical computation can solve hard combinatorial problems efficiently: we showed previously how Q-SAT (the satisfiability problem of quantified boolean formulae) can be solved in bounded space and time using instance-specific signal machines and fractal parallelization. In this article, we propose an approach for constructing a particular generic machine for the same task. This machine deploies the Map/Reduce paradigm over a discrete fractal structure. Moreover our approach is modular: the machine is constructed by combining modules. In this manner, we can easily create generic machines for solving satisfiability variants, such as SAT, #SAT, MAX-SAT.
Fichier principal
Vignette du fichier
2012_TAMC_CR.pdf (220.51 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-00673603 , version 1 (08-06-2012)

Identifiers

  • HAL Id : hal-00673603 , version 1

Cite

Denys Duchier, Jérôme Durand-Lose, Maxime Senot. Computing in the fractal cloud: modular generic solvers for SAT and Q-SAT variants.. Theory and Applications of Models of Computation (TAMC 2012), May 2012, Beijing, China. pp.435-447. ⟨hal-00673603⟩
132 View
180 Download

Share

Gmail Facebook X LinkedIn More