
HAL Id: hal-00673603
https://hal.science/hal-00673603

Submitted on 8 Jun 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Computing in the fractal cloud: modular generic solvers
for SAT and Q-SAT variants.

Denys Duchier, Jérôme Durand-Lose, Maxime Senot

To cite this version:
Denys Duchier, Jérôme Durand-Lose, Maxime Senot. Computing in the fractal cloud: modular generic
solvers for SAT and Q-SAT variants.. Theory and Applications of Models of Computation (TAMC
2012), May 2012, Beijing, China. pp.435-447. �hal-00673603�

https://hal.science/hal-00673603
https://hal.archives-ouvertes.fr


Computing in the fractal cloud:

modular generic solvers for

SAT and Q-SAT variants

Denys Duchier, Jérôme Durand-Lose, and Maxime Senot ⋆

LIFO, Université d’Orléans,
B.P. 6759, F-45067 ORLÉANS Cedex 2.

{denys.duchier, jerome.durand-lose, maxime.senot}@univ-orleans.fr

Abstract. Abstract geometrical computation can solve hard combina-
torial problems efficiently: we showed previously how Q-SAT —the sat-
isfiability problem of quantified boolean formulae— can be solved in
bounded space and time using instance-specific signal machines and frac-
tal parallelization. In this article, we propose an approach for construct-
ing a particular generic machine for the same task. This machine deploys
the Map/Reduce paradigm over a discrete fractal structure. Moreover
our approach is modular : the machine is constructed by combining mod-
ules. In this manner, we can easily create generic machines for solving
satifiability variants, such as SAT, #SAT, MAX-SAT.

Keywords. Abstract geometrical computation; Signal machine; Frac-
tal; Satisfiability problems; Massive parallelism; Model of computation.

1 Introduction

Since their first formulations in the seventies, problems of Boolean satisfiability
have been studied extensively in the field of computational complexity. Indeed,
the most important complexity classes can be characterized —in terms of re-
ducibility and completeness— by such problems e.g. SAT for NP [4] and Q-SAT
for PSPACE [21]. As such, it is a natural challenge to consider how to solve
these problems when investigating new computing machinery: quantum, NDA
and membrane [20], optical [13], hyperbolic spaces [18], etc. (for an overview of
the status of NP-complete problems under several physical assumptions, see [1]).

This is the line of investigation that we have been following with signal ma-
chines, an abstract and geometrical model of computation. We showed previously
how such machines were able to solve SAT [6] and Q-SAT [7] in bounded space
and time and in quadratic collision depth, a model-specific time complexity mea-
sure defined by the maximal number of consecutives collisions, which is better

⋆ This work was partially supported by the ANR project AGAPE, ANR-09-BLAN-
0159-03.



suited to the strong parallelism of signal machines. But in both cases, the ma-
chines were instance-specific i.e. depended on the formula whose satifiability was
to be determined. The primary contribution of the present paper is to exhibit a
particular generic signal machine for the same task: it takes the instance formula
as an input encoded (by a polynomial-time Turing machine) in an initial con-
figuration. This single machine replaces the whole family of machines designed
previously (one machine for each formula) and formulae are now represented by
inputs (as for classical algorithms) instead of being encoded by signals and rules
of machines. We further improve our previous results by describing a modular
approach that allows us to easily construct generic machines for other variants
of SAT, such as #SAT or MAX-SAT. We also introduce a new technical gadget,
the lens device, which automatically scales by half any beam of signals. These
constructions are in cubic collision depth instead of quadratic for the previous
instance-specific solutions.

The model of signal machines, called abstract geometrical computation, in-
volves two types of fundamental objects: dimensionless particles and collision
rules. We use here one-dimensional machines: the space is the Euclidean real
line, on which the particles move with a constant speed. Collision rules describe
what happens when several particles collide. By representing continuous time
on a vertical axis, we obtain two-dimensional space-time diagrams, in which the
motion of the particles are represented by lines segment called signals. Signal ma-
chines can simulate Turing machines and are thus Turing-universal [11]. Under
some assumptions and by using the continuity of space and time, signal machines
can simulate analog models such as computable analysis [10] and they can even
be super-Turing by embedding the black hole model (forecasting a black-hole in
signal machines is highly indecidable as shown in [9]).

Other geometrical models of computation exist: colored universes [15], geo-
metric machines [14], optical machines [19], interaction nets [17], piecewise con-
stant derivative systems [2], tilings [16], etc.

All these models, including signal machines, belong to a larger class of models
of computation, called unconventional, which are more powerful than classical
ones (Turing machines, RAM, while-programs. . . ). Among all these abstract
models, the model of signal machines distinguishes itself by realistic assump-
tions respecting the major principles of physics —finite density of information,
respect of causality and bounded speed of information— which are, in general,
not respected all at the same time by other models. Nevertheless, signal machines
remain an abstract model, with no a priori ambition to be physically realizable,
and is studied for theoretical issues of computer sciences such as computability
power and complexity measures.

As signal machines take their origins in the world of cellular automata, not
only can they be a powerful tool for understanding the latter’s complex behav-
iors, implementing computations [12] and proving universality [3] but they too
can be viewed as a massively parallel computational device. This is the approach
proposed here: we put in place a fractal compute grid, then use the Map/Reduce
paradigm to distribute the computations, then aggregate the results.



The Map/Reduce pattern, pioneered by Lisp, is now standard in functional
programming: a function is applied to many inputs (map), then the results are
aggregated (reduce). Google extended this pattern to allow its distributed com-
putation over a grid of possibly a thousand nodes [5]. The idea is to partition the
input (petabytes of data) into chunks, and to process these chunks in parallel
on the available nodes. When solving combinatorial problems, we are also faced
with massive inputs; namely, the exponential number of candidate solutions.
Our approach is to distribute the candidates, and thus the computation, over an
unbounded fractal grid. In this way, we adapt the map/reduce pattern for use
over a grid with fractal geometry.

Our contribution in this paper is three fold: first, we show how Q-SAT can
be solved in bounded space and time using a generic machine, where the input
(the formula) is simply compiled into an initial configuration. This improves on
our previous result where the machine itself depended on the formula. Second,
we propose the first architecture for fractally distributed computing (the fractal
cloud) and give a way to automatically shrink the data into this structure by
means of a lens device. Third, we show how generic machines for many variants
of SAT can be assembled by composing independent modules, which naturally
emerged from the generalization of our previous family of machines into a single
machine solving Q-SAT. Each module can be programmed and understood in-
dependently. We also discuss notions and choices of complexity measures which
strongly depend of the considered model of computation, and we argue that col-
lision depth, a time complexity measure introduced in [6], is more relevant to
signal machines. The collision depth of the given construction is cubic in the size
of the input formula and space complexity is exponential.

The paper is structured as follow. Signal machines are introduced in Section 2.
Section 3 presents the fractal tree structure used to achieve massive parallelism
and how general computations can be inserted in the tree. Section 4 details this
implementation for a Q-SAT solver and Section 5 explains how some variants of
satisfiability problems can be solved with the same approach. Complexities are
discussed in Section 6 and conclusions and remarks are gathered in Section 7.

2 Definitions

Signal machines are an extension of cellular automata from discrete time and
space to continuous time and space. Dimensionless signals/particles move along
the real line and rules describe what happens when they collide.

Signals. Each signal is an instance of a meta-signal. The associated meta-signal
defines its speed. Figure 1 presents a very simple space-time diagram. Time is
increasing upwards and the meta-signals are indicated as labels on the signals.
Generally, we use over-line arrows to indicate the direction and speed of propaga-
tion of a meta-signal. For example, −→a and ⇐=a denote two different meta-signals:
the first travels to the right at speed 1, while the other travels to the left at
speed −3. w and a are both stationary meta-signals.



Meta-signals Speed

w, a 0
−→
a 1
=⇒
a 3
⇐=
a −3

w w

=⇒
a

⇐=
a

−→
a

a

Collision rules

=⇒
a ,w → ⇐=a ,w
−→
a ,⇐=a → a

Initial configuration

{w,−→a ,=⇒a }@0
{w}@1

Fig. 1. Geometrical algorithm for computing the middle

Collision rules. When a set of signals collide i.e. when they are at the same spa-
tial location at the same time, they are replaced by a new set of signals according
to a matching collision rule. A rule has the form: σ1, . . . , σn → σ′

1
, . . . , σ′

p where
all σi are meta-signals of distinct speeds as well as σ′

j (two signals cannot collide
if they have the same speed and outcoming signals must have different speeds).
A rule matches a set of colliding signals if its left-hand side is equal to the set of
their meta-signals. By default, if there is no exactly matching rule for a collision,
the behavior is defined to regenerate exactly the same meta-signals. In such a
case, the collision is called blank. Collision rules can be deduced from space-time
diagrams as on Fig. 1 where they are also listed on the right.

Definition 1. A signal machine M is a tripletM = (M,S,C) where M is a
finite set of meta-signals, S : M → R is the speed function which assigns a real
speed to each meta-signal and C is the set of collision rules.
An initial configuration c0 is a finite set c0 = {(σi, xi) | σ ∈ M and x ∈ R}.
For a signal σi at initial position xi, we also note σi@ xi.

A signal machine is executed starting from an initial configuration which
corresponds to the input. The evolution of a signal machine can be represented
geometrically as a space-time diagram: space is always represented horizontally,
and time vertically, growing upwards. The geometrical algorithm displayed in
Fig. 1 computes the middle: the new a is located exactly halfway between the
initial two w. Constructions given in the present paper are achieved by a rational
signal machine: all speeds and initial positions are rational values (in particular,
speeds take just a few integer values: −3,−1, 0, 1 and 3). It follows that every
collision happens at rational coordinates.

3 Computing in the fractal cloud

Constructing the fractal. The fractal structure that interests us is based on the
simple idea of computing the middle illustated in Fig. 1. We just indefinitely
repeat this geometrical construction: once space has been halved, we recursively
halve the two halves, and so on.



(a) Constructing the fractal cloud (b) Distributing a computation

Fig. 2. Computing in the fractal cloud

This is illustrated in Fig. 2(a) and can be generated by the following rules⋆:

w,⇐=a → w,=⇒a −→
a ,⇐=a →⇐=a ,←−a , a,−→a ,=⇒a

using {w,−→a ,=⇒a }@0 and {w}@1 as the initial configuration. This produces a stack
of levels: each level is half the height of the previous one. As a consequence, the
full fractal has width 1 and height 1.

Distributing a computation. The point of the fractal is to recursively halve space.
At each point where space is halved, we position a stationary signal (a vertical
line in the space-time diagram). We can use this structure, so that, at each
halving point (stationary signal), we split the computation in two: send it to the
left with half the data, and also to the right with the other half of the data.

The intuition is that the computation is represented by a beam of signals,
and that stationary signals split this beam in two, resulting in one beam that
goes through, and one beam that is reflected.

Unfortunately, a beam of constant width will not do: eventually it becomes
too large for the height of the level. This can be clearly seen in Fig. 2(b).

The lens device. The lens device narrows the beam by a factor of 2 at each level,
thus automatically adjusting it to fit the fractal (see Fig. 3). It is implemented by
the following meta-rule: unless otherwise specified, any signal −→σ is accelerated
by ⇐=a and decelerated and split by any stationary signal s.

⋆ For brevity, we will always omit the rules which can be obtained from the others by
symmetry. We refer to the extended version [8] for more details.



−→σ

=⇒σ

←−σ −→σ

⇐=
a

t 3t

t

t

(a) Narrows by 2 (b) Effect on propagation

Fig. 3. The lens device

Generic computing over the fractal cloud. With the lens device in effect, generic
computations can take place over the fractal by propagating a beam from an
initial configuration. We write [(−→σn . . .

−→σ1)spawn] for an initial configuration
with a sequence −→σn . . .

−→σ1 of signals disposed from left to right on the space line.
Geometrically, it can easily be seen that, in order for the beam to fit through
the first level, the sequence −→σn . . .

−→σ1 must be placed in the interval (− 1

4
, 0).

Modules. A module is a set of signals which correspond to a given task. We
describe a module by the parametric abstraction defining its instance-specific
contribution to the initial configuration in the form [module] = −→σn . . .

−→σ1 and by
the generic (i.e. instance-independent) collision rules describing how this module
interacts with other modules.

Stopping the fractal. For finite computations, we don’t need the entire fractal.
The [until(n)] module can be inserted in the initial configuration to cut the

fractal after n levels have been generated. We set: [until(n)] = −→z
−→
ζ
n−1

.

=⇒
ζ ,←−a →←−a◦,

=⇒
ζ

=⇒
ζ , a→ a◦

=⇒
ζ , a◦ →

←−
ζ , a◦,

−→
ζ

=⇒
z ,←−a →←−a◦,

=⇒
z

=⇒
z ,←−a◦ →

←−
a ,=⇒z =⇒

z , a◦ →
←−
z , a,−→z

=⇒
z , a→ a,=⇒z =⇒

z ,−→a → −→a◦
=⇒
a ,←−a◦ → ∅

Table 1. Stopping the fractal.

The subbeam
−→
ζ
n−1

are the inhibitors for −→z . One inhibitor is consumed
at each level, after which =⇒

z takes effect and turns ←−a into ←−a◦ which finally
annihilates the constructing signals via the rule =⇒a ,←−a◦ → ∅, bringing the fractal to
a stop. Thus, a computation [(−→σn . . .

−→σ1[until(n)])spawn] uses only n levels.
It can be seen geometrically that, for the collision of =⇒z with −→a to occur before
the latter meets with ⇐=a , −→z must initially be placed in (− 1

6
, 0).



4 A modular Q-SAT solver

Q-SAT is the satisfiability problem for quantified Boolean formulae (QBF). A
QBF is a closed formula of the form φ = Q1x1Q1x2 . . . Qnxn ψ(x1, x2, . . . , xn)
where Qi ∈ {∃, ∀} and ψ is a quantifier-free formula of propositional logic. A
classical recursive algorithm for solving Q-SAT is:

qsat(∃x φ) = qsat(φ[x← false]) ∨ qsat(φ[x← true])

qsat(∀x φ) = qsat(φ[x← false]) ∧ qsat(φ[x← true])

qsat(β) = eval(β)

where β is a ground Boolean formula. This is exactly the structure of our con-
struction: each quantified variable splits the computation in 2, qsat(φ[x← false])
is sent to the left and qsat(φ[x ← true]) to the right, and subsequently the re-
cursively computed results that come back are combined (with ∨ for ∃ and ∧ for
∀) to yield the result for the quantified formula. This process can be viewed as
an instance of Map/Reduce, where the Map phase distributes the combinatorial
exploration of all possible valuations across space using a binary decision tree,
and the Reduce phase collects the results and aggregates them using quantifier-
appropriate Boolean operations. Our Q-SAT solver is modularly composed as
follows (modules decide, map:sat, and reduce:qsat are described below):
[([reduce:qsat(Q1x1 . . . Qnxn)][map:sat(ψ)]

[decide(n)][until(n+ 1)])spawn]

4.1 Setting up the decision tree

For a QBF with n variables, we need 1 level per variable, and then at level n+1
we have a ground propositional formula that needs to be evaluated. Thus, the
first module we insert is [until(n + 1)] to create n + 1 levels. We then insert
[decide(n)] because we want to use the first n levels as decision points for
each variable. This is simply achieved by taking [decide(n)] = −→α

n
(one signal

−→α per level) with the following rules: =⇒α , a → x (turning stationary signal into
assigning ones) and =⇒α , x→←−α , x,−→α (splitting the remaining −→α for next levels).

4.2 Compiling the formula

The intuition is that we want to compile the formula into a form of inverse
polish notation to obtain executable code using postfix operators. At level n+1

all variables have been decided, and have become
−→
t or

−→
f . The ground formula,

regarded as an expression tree, can be executed bottom up to compute its truth
value: the resulting signal for a subexpression is sent to interact with its parent
operator. The formula is represented by a beam of signals: each subformula is
represented by a (contiguous) subbeam. A subformula that arrives at level n+1
starts evaluating when it hits the stationary a. When its truth value has been
computed, it is reflected so that it may eventually collide with the incoming
signal of its parent connective.



Compilation. For binary connectives, one argument arrives first, it is evaluated,
and its truth value is reflected toward the incoming connective; but, in order to
reach it, it must cross the incoming beam for the other argument and not interact
with the connectives contained therein. For this reason, with each subexpression,

we associate a beam −→γ
k
of inhibitors that prevents its resulting truth value

from interacting with the first k connectives that it crosses. We write C[[ψ]] for
the compilation of ψ into a contribution to the initial configuration, and ‖ ψ ‖
for the number of occurrences of connectives in ψ. The following scheme of
compilation produces an initial configuration wich has a size —the number of
signals— at most quadratic in the size s of the input formula. Clearly, for each
node (i.e. symbol) of the formula, only a linear number of inhibitor signals −→γ
can be added, so C[[ψ]] is composed by at most O(s · s) = O(s2) signals. The
compilation is done by induction on the formula:

C[[ψ]] = C[[ψ]]
0

C[[ψ1 ∧ ψ2]]
k
=
−→
∧ −→γ

k
C[[ψ1]]

0
C[[ψ2]]

‖ψ1‖

C[[ψ1 ∨ ψ2]]
k
=
−→
∨ −→γ

k
C[[ψ1]]

0
C[[ψ2]]

‖ψ1‖

C[[¬ψ]]k = −→¬ −→γ
k
C[[ψ]]

C[[xi]]
k
= [var(xi)]

−→γ
k

Variables. We want variable xi to be decided at level i. This can be achieved
using i−1 inhibitors. For variable xi, the idea is to protect

=⇒
x from being assigned

into
←−
f and

−→
t until it reaches the ith level. This is achieved with a stack of i− 1

signals
=⇒
β : at each level, the first

=⇒
β turns the stationary signal x into x◦(the

non-assigning version of x) and disappears. The following
=⇒
β and =⇒

x are simply

split, =⇒x taking x◦ back into x. After the first i − 1 levels, all the
−→
β have been

consumed so that =⇒x finally collides directly with x and splits into
←−
f going left

and
−→
t going right. The variable xi is initially coded by: [var(xi)] = −→x

−→
β
i−1

.

=⇒
β , x→ x◦

=⇒
β , x◦ →

←−
β , x◦,

−→
β

=⇒
x , x→

←−
f , x,

−→
t

=⇒
x , x◦ →

←−
x , x,−→x

Table 2. Coding and assigning variables.

Evaluation. When hitting a at level n + 1,
=⇒
t is reflected as

←−
T , and

=⇒
f as

←−
F :

these are their activated versions which can interact with incoming connectives
to compute the truth value of the formula according to the rules given in Tab. 3
for ∧ (other connectives are similar, cf [8]). See Fig. 4(a) for an example.

Storing the results. In order to make the result easily exploitable by the Re-
duce phase, we now store it with a signal −→s as the stationary signal at level



=⇒
γ

a

=⇒
γ

←
−γ
+

=⇒
γ

a

=⇒
t

←
−γ

+

=⇒
t

←
−γ

+

=⇒
t

a

=⇒
t

←
−γ

+

=⇒
t

←
−γ

+

=⇒
¬

←
−γ
+

=⇒
¬◦

←
−γ

+
=⇒
t ←−

T

=⇒
t

a

=⇒
t

←
−γ
+

=⇒
¬◦

←−
T

=⇒
¬

←−
T

=⇒
∧ ←

−γ
+

=⇒
t

←−
T

=⇒
f

a

=⇒
∧◦

←−
T =⇒

t

←−
F

=⇒
t

a

=⇒
∨

←−
T =⇒

∧

←−
F

=⇒
f+ ←−

T

=⇒
f

a

=⇒
t+

←−
F

=⇒
t

a

=⇒s

←−
T

=⇒
T

a

=⇒c

t

←−
t

(a) Evaluation
case x1 = x2 = x3 = t

[(−→c
−→
∀ 2
−→
∃−→s
−→
∨
−→
∧−→x −→¬−→x

−→
β −→x
−→
β 2−→γ 2−→α 3−→

z
−→
ζ 3)spawn]

(c) Initial configuration

=⇒
c , t→

←−
t

=⇒
c , f →

←−
f

−→
t , ∃L,

←−
t →

←−
t

−→
t , ∀L,

←−
t →

←−
t

−→
t , ∃L,

←−
f →

←−
t

−→
t , ∀L,

←−
f →

←−
f

−→
f , ∃L,

←−
t →

←−
t

−→
f , ∀L,

←−
t →

←−
f

−→
f , ∃L,

←−
f →

←−
f

−→
f , ∀L,

←−
f →

←−
f

−→f

∀
R

←−
t −→f

∀
L

←−
t −→t

∀
R

←−
t −→f

∀
L

←−
t

−→f

∀
R

←−
f −→t

∀
L

←−
f

−→f

∃
L

←−
f

←−
f

(b) Aggregation

Fig. 4. Example ∃x1∀x2∀x3 (x1 ∧ ¬x2) ∨ x3

n+ 1; it replaces a, which becomes a signal t or f. The complete Map phase is
implemented by: [map:sat(ψ)] = −→s C[[ψ]] .

4.3 Aggregating the results

As explained earlier, the results for an existentially (resp. universally) quantified
variable must be combined using ∨ (resp. ∧).

Setting up the quantifiers. We turn the decision points of the first n levels into
quantifier signals. Moreover, at each level, we must also take note of the direction
in which the aggregated result must be sent. Thus ∃L represents an existential
quantifier that must send its result to the left. Rules are given by table Tab. 4.

For this, we set: [reduce:qsat:init(Q1x1 · · ·Qnxn)] =
−→
Qn . . .

−→
Q1 .



=⇒
t , a→

←−
T , a

=⇒
f , a→

←−
F , a =⇒γ , a→←−γ+, a

=⇒
∧ ,
←−
T →

=⇒
∧+

=⇒
f+,
←−
T →

=⇒
f

=⇒
∧+,
←−
T →

=⇒
t

=⇒
∧ ,
←−
F →

=⇒
f+

=⇒
f+,
←−
F →

=⇒
f

=⇒
∧+,
←−
F →

=⇒
f

=⇒
∧ ,←−γ+ →

=⇒
∧◦

=⇒
∧◦,
←−
T →

←−
T ,

=⇒
∧

=⇒
∧◦,
←−
F →

←−
F ,

=⇒
∧

Table 3. Evaluation rules for ∧ connective.

x,
⇐=
∃ → ∃R

=⇒
∃ , x→ ∃L x,

⇐=
∀ → ∀R

=⇒
∀ , x→ ∀L

Table 4. Setting up the quantifiers and the direction of the results.

Aggregating the results. Actual aggregation is initiated by −→c and then executes
according to the rules given in Fig 4(b). We just have [reduce:qsat:exec] = −→c .
The complete Reduce phase is implemented by
[reduce:qsat(Q1x1 · · ·Qnxn)] =

[reduce:qsat:exec][reduce:qsat:init(Q1x1 · · ·Qnxn)] .

5 Machines for SAT variants

Similar machines for variants of SAT can be obtained easily, typically by using
different modules for the Reduce phase. All the details of modules and rules can
be found in [8].

#SAT. Counting the number of satisfying assignments for ψ can be achieved
using a module implementing a binary adder with signals as shown in Fig. 5.

−→
1

−→
1

−→
δ

−→ε

←−
1

←−
δ

←−ε−→
0

−→
0

−→
1

−→
δ

−→ε

−→
δ

+0

R

+1

R

+1

R

+0

R

Fig. 5. Computing 3 + 1.

ENUM-SAT. Returning all the satisfying
assignments for a propositional formula ψ
can be achieved easily by adding a module
which stores satisfying assignments as sta-
tionary beams and which annihilates the
non-satisfying ones.

MAX-SAT. It consists in finding the max-
imum number of clauses that can be sat-
isfied by an assignment. Here we must
count (with the previous adder module)
the number of satisfied clauses rather than
the number of satisfying assignments, and
then stack a module for computing the
max of two binary numbers.



6 Complexities

As mentioned in Sect. 1, we implement algorithms for satisfiability problems
on signal machines in order to investigate the computational power of our ab-
stract geometrical model of computation and to compare it to others. As we
shall see, for such comparisons to be meaningful, the way complexity is mea-
sured is essential and must be adapted tot he nature of the computing machine.

Fig. 6. The whole diagram.

Since signal machines can be regarded as
the extension of cellular automata from
discrete to continous time and space, it
might seem natural to measure time (resp.
space) complexity of a computation us-
ing the height (resp. width) of its space-
time diagram. But, in our applications to
SAT variants, these are bounded and in-
dependant of the formula: the Map phase
is bounded by the fractal, and, by sym-
metry, so is the Reduce phase. Indeed, in
general, by an appropriate scaling of the
initial configuration, a finite computation
could be made as small as desired. Thus,
height and width are no longer pertinent
measures of complexity.

Instead, we should regard our con-
struction as a massively parallel computational device transforming inputs into
outputs. The input is the initial configuration at the bottom of the diagram,
and the output is the truth value signal coming out at the top of the whole
construction, as seen in Fig. 6 for formula ∃x1∀x2∀x3 (x1 ∧ ¬x2) ∨ x3

⋆⋆ . The
transformation is performed in parallel by many threads: a thread here is an
ascending path through the diagram from an input to the output, and the op-
erations executed by the thread are the collisions occurring on this path.

Formally, we view a space-time diagram as a directed acyclic graph of col-
lisions (vertices) and signals (arcs) oriented according to causality. Time com-
plexity is then defined as the maximal size of a chain of collisions i.e. the length
of the longest path, and space complexity as the maximal size of an anti-chain
i.e. the size of the maximal set of signals pairwise un-related. This model-specific
measure of time complexity is called collisions depth.

For the present construction, if s is the size of the formula and n the number
of variables, space complexity is exponential: during evaluation, 2n independent
computations are executed in parallel, each one involving less than s2 signals, so
that the total space complexity is in O(s2 · 2n).

⋆⋆ All the diagrams used as examples in the paper were generated by Durand-Lose’s
software, implemented in Java, and corresponds to a run of our Q-SAT solver for
the running example.



Regarding the time complexity: the initial configuration contains at most
O(s2) signals (from the compilation process as explained in Sect. 4, other mod-
ules adding only a linear number of signals). The primary contribution to the
number of collisions along an ascending path comes, at each of the n levels,
from the reflected beam crossing the incoming beam. Thus a thread involves
O(n · s2) collisions, making the collision depth cubic in the size of the formula
instead of quadratic for our previous family of machines [7]. So here the measure
of the time complexity takes one more polynomial degree (from quadratic to
cubic) when we get an algorithm which is independent of the input instead of
an instance-dependent one. This gives us an idea of the price for genericity.

7 Conclusion

We showed in this paper that abstract geometrical computation can solve Q-
SAT in bounded space and time by means of a single generic signal machine.
This is achieved through massive parallelism enabled by a fractal construction
that we call the fractal cloud. We adapted the Map/Reduce paradigm to this
fractal cloud, and described a modular programming approach making it easy
to assemble generic machines for SAT variants such as #SAT or MAX-SAT.

As we explained in Sect. 6, time and space are no longer appropriate mea-
sures of complexity for geometrical computations. This leads us to propose new
definitions of complexity, specific to signal machines , and taking in account the
parallelism of the model: time and space complexities are now defined respec-
tively by the maximal sizes of a chain and an anti-chain, when the diagram
is regarded as a directed acyclic graph. Time complexity thus defined is called
collision depth and is cubic for the construction given here.

Although the model is purely theoretical and has no ambition to be physically
realizable, it is a significant and distinguishing aspect of signal machines that
they solve satifiability problems while adhering to major principles of modern
physics —finite density and speed of information, causality— that are typically
not considered by other unconventional models of computation. They do not,
however, respect the quantization hypothesis, nor the uncertainty principle.

We are now furthering our research along two axes. First, the design and
applications of other fractal structures for modular programming with fractal
parallelism. Second, the investigation of computational complexity classes, both
classical and model-specific for abstract geometrical computation.

References

1. Aaronson, S.: NP-complete problems and physical reality. SIGACT News. 36(1),
30–52 (2005)

2. Asarin, E., Maler, O.: Achilles and the Tortoise climbing up the arithmetical hier-
archy. In: 15th Int. Conf. on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS ’95). pp. 471–483. No. 1026 in LNCS (1995)



3. Cook, M.: Universality in elementary cellular automata. Compl. Syst. 15(1), 1–40
(2004)

4. Cook, S.: The complexity of theorem proving procedures. In: 3rd Symp. on Theory
of Computing (STOC ’71). pp. 151–158. ACM (1971)

5. Dean, J., Ghemawat, S., Inc., G.: Map/Reduce: simplified data processing on
large clusters. In: 6th Symp. on Operating Systems Design & Implementation
(OSDI’ 04). USENIX Association (2004)

6. Duchier, D., Durand-Lose, J., Senot, M.: Fractal parallelism: Solving SAT in
bounded space and time. In: Cheong, O., Chwa, K.Y., Park, K. (eds.) 21st Int.
Symp. on Algorithms and Computation (ISAAC ’10). pp. 279–290. LNCS 6506,
Springer (2010)

7. Duchier, D., Durand-Lose, J., Senot, M.: Massively parallel automata in Euclidean
space-time. In: IEEE 4th Int. Conf. on Self-Adaptive and Self-Organizing Systems
Workshops (SASOW ’10). pp. 104–109. IEEE Computer Society (2010)

8. Duchier, D., Durand-Lose, J., Senot, M.: Computing in the fractal cloud: modular
generic solvers for SAT and Q-SAT variants (extended version). Arxiv preprint
arXiv:1105.3454, available at http://arxiv.org/abs/1105.3454 (2011)

9. Durand-Lose, J.: Forecasting black holes in abstract geometrical computation is
highly unpredictable. In: Cai, J.Y., Cooper, S.B., Li, A. (eds.) 3rd Int. Conf. on
Theory and Applications of Models of Computations (TAMC ’06). pp. 644–653.
No. 3959 in LNCS, Springer (2006)

10. Durand-Lose, J.: Abstract geometrical computation and computable analysis. In:
Costa, J., Dershowitz, N. (eds.) 8th Int. Conf. on Unconventional Computation
2009 (UC ’09). pp. 158–167. LNCS 5715, Springer (2009)

11. Durand-Lose, J.: Abstract geometrical computation 4: small Turing universal sig-
nal machines. Theoret. Comp. Sci. 412, 57–67 (2011)

12. Fischer, P.: Generation of primes by a one-dimensional real-time iterative array.
Jour. ACM 12(3), 388–394 (1965)

13. Goliaei, S., Jalili, S.: An optical solution to the 3-SAT problem using wavelength
based selectors. The Journal of Supercomputing pp. 1–10 (2010)

14. Huckenbeck, U.: Euclidian geometry in terms of automata theory. Theoret. Comp.
Sci. 68(1), 71–87 (1989)

15. Jacopini, G., Sontacchi, G.: Reversible parallel computation: an evolving space-
model. Theoret. Comp. Sci. 73(1), 1–46 (1990)

16. Jeandel, E., Vanier, P.: π1
0 sets and tilings. In: Ogihara, M., Tarui, J. (eds.) 8th Int.

Conf. on Theory and Applications of Models of Compuation (TAMC ’11). LNCS,
vol. 6648, pp. 230–239. Springer (2011)

17. Mackie, I.: A visual model of computation. In: Kratochv́ıl, J., Li, A., Fiala, J.,
Kolman, P. (eds.) 7th Int. Conf. on Theory and Applications of Models of Com-
putation (TAMC ’10). LNCS, vol. 6108, pp. 350–360. Springer (2010)

18. Margenstern, M., Morita, K.: NP problems are tractable in the space of cellular
automata in the hyperbolic plane. Theoret. Comp. Sci. 259(1–2), 99–128 (2001)

19. Naughton, T., Woods, D.: An optical model of computation. Theoret. Comput.
Sci. 334(1-3), 227–258 (2005)

20. Păun, G.: P-systems with active membranes: Attacking NP-Complete problems.
Jour. of Automata, Languages and Combinatorics 6(1), 75–90 (2001)

21. Stockmeyer, L., Meyer, A.: Word problems requiring exponential time. In: 5th
ACM Symp. on Theory of Computing (STOC ’73). vol. 16, pp. 1–9 (1973)


