A Kernel Multiple Change-point Algorithm via Model Selection - Archive ouverte HAL
Article Dans Une Revue Journal of Machine Learning Research Année : 2019

A Kernel Multiple Change-point Algorithm via Model Selection

Sylvain Arlot
Alain Celisse

Résumé

We tackle the change-point problem with data belonging to a general set. We build a penalty for choosing the number of change-points in the kernel-based method of Harchaoui and Cappé (2007). This penalty generalizes the one proposed by Lebarbier (2005) for one-dimensional signals. We prove a non-asymptotic oracle inequality for the proposed method, thanks to a new concentration result for some function of Hilbert-space valued random variables. Experiments on synthetic data illustrate the accuracy of our method, showing that it can detect changes in the whole distribution of data, even when the mean and variance are constant.
Fichier principal
Vignette du fichier
kernelchpt_hal_v3.pdf (1.16 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00671174 , version 1 (17-02-2012)
hal-00671174 , version 2 (18-03-2016)
hal-00671174 , version 3 (14-03-2019)

Identifiants

Citer

Sylvain Arlot, Alain Celisse, Zaid Harchaoui. A Kernel Multiple Change-point Algorithm via Model Selection. Journal of Machine Learning Research, 2019, 20 (162), pp.1--56. ⟨hal-00671174v3⟩
1447 Consultations
1117 Téléchargements

Altmetric

Partager

More