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Abstract

We tackle the change-point problem with data belonging to a general set. We
build a penalty for choosing the number of change-points in the kernel-based method of
Harchaoui and Cappé (2007). This penalty generalizes the one proposed by Lebarbier
(2005) for a one-dimensional signal changing only through its mean. We prove a non-
asymptotic oracle inequality for the proposed method, thanks to a new concentration
result for some function of Hilbert-space valued random variables. Experiments on
synthetic and real data illustrate the accuracy of our method, showing that it can
detect changes in the whole distribution of data, even when the mean and variance are
constant.

Keywords: model selection, kernel methods, change-point detection, concentration in-
equality

1 Introduction

The change-point problem has been tackled in numerous papers in the statistics and ma-
chine learning literature (Brodsky and Darkhovsky, 1993; Carlstein et al., 1994; Tartakovsky
et al., 2014; Truong et al., 2019). Given a time series, the goal is to split it into homoge-
neous segments, in which the marginal distribution of the observations —their mean or
their variance, for instance— is constant. When the number of change-points is known,
this problem reduces to estimating the change-point locations as precisely as possible; in
general, the number of change-points itself must be estimated. This problem arises in a
wide range of applications, such as bioinformatics (Picard et al., 2005; Curtis et al., 2012),
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neuroscience (Park et al., 2015), audio signal processing (Wu and Hsieh, 2006), temporal
video segmentation (Koprinska and Carrato, 2001), hacker-attacks detection (Wang et al.,
2014), social sciences (Kossinets and Watts, 2006) and econometrics (McCulloh, 2009).

Related work A large part of the literature on change-point detection deals with obser-
vations in R or Rd and focuses on detecting changes arising in the mean and/or the variance
of the signal (Gijbels et al., 1999; Picard et al., 2005; Arlot and Celisse, 2011; Bertin et al.,
2014). To this end, parametric models are often involved to derive change-point detection
procedures. For instance, Comte and Rozenholc (2004), Lebarbier (2005), Picard et al.
(2011) and Geneus et al. (2014) make a Gaussian assumption, while Frick et al. (2014) and
Cleynen and Lebarbier (2014) consider an exponential family.

The challenging problem of detecting abrupt changes in the full distribution of the
data has been recently addressed in the nonparametric setting. However, the corresponding
procedures suffer several limitations since they are limited to real-valued data or they assume
that the number of true change-points is known. For instance, Zou et al. (2014) design a
strategy based on empirical cumulative distribution functions that allows to recover an
unknown number of change-points by use of BIC, but only applies to R-valued data. The
strategy of Matteson and James (2014) applies to multivariate data, but it is time-consuming
due to an intensive permutation use, and fully justified only in an asymptotic setting when
there is a single change-point (Biau et al., 2016). The kernel-based procedure proposed
by Harchaoui and Cappé (2007) enables to deal not only with vectorial data but also with
structured data in the sense of Gärtner (2008), but it assumes that the number of change-
points to recover is known, which reduces its practical interest when no such information is
available. Finally, many of these procedures are theoretically grounded only by asymptotic
results, which makes their finite-sample performance questionable.

Other attempts have been made to design change-point detection procedures allowing
to deal with complex data (that are not necessarily vectors). However, the resulting pro-
cedures do not allow to detect more than one or two changes arising in particular features
of the distribution. For instance, Chen and Zhang (2015) describe a strategy based on a
dissimilarity measure between individuals to compute a graph from which a statistical test
allows to detect only one or two change-points. For a graph-valued time series, Wang et al.
(2014) design specific scan statistics to test whether one change arises in the connectivity
matrix.

Main contributions We first describe a new efficient multiple change-point detection
procedure (KCP) allowing to deal with univariate, multivariate or complex data (DNA
sequences or graphs, for instance) as soon as a positive semidefinite kernel can be defined
for them. Among several assets, this procedure is nonparametric and does not require to
know the true number of change-points in advance. Furthermore, it allows to detect abrupt
changes arising in the full distribution of the data by using a characteristic kernel; it can
also focus on changes in specific features of the distribution by choosing an appropriate
kernel.

Secondly, our procedure (KCP) is theoretically grounded with a finite-sample optimality
result, namely an oracle inequality in terms of quadratic risk, stating that its performance
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is almost the same as that of the best one within the class we consider (Theorem 2). As
argued by Lebarbier (2005) for instance, such a guarantee is what we want for a change-
point detection procedure. It means that the procedure detects only changes that are “large
enough” given the noise level and the amount of data available, which is necessary to avoid
having many false positives. A crucial point is that Theorem 2 holds true for any value of
the sample size n; in particular it can be smaller than the dimensionality of the data. Note
that contrary to previous oracle inequalities in the change-point detection framework, our
result requires neither the variance to be constant nor the data to be Gaussian.

Thirdly, we settle a new concentration inequality for the quadratic norm of sums of
independent Hilbert-valued vectors with exponential tails, which is a key result to derive our
non-asymptotic oracle inequality with a large collection of candidate segmentations. The
application domain of our exponential concentration inequality is not limited to change-
point detection.

Let us finally mention that since the first version of the present work (Arlot et al., 2012),
KCP has been successfully applied on different practical examples. Celisse et al. (2018)
illustrate that KCP outperforms state-of-the-art approaches on biological data. Cabrieto
et al. (2017) show that KCP with a Gaussian kernel outperforms three non-parametric
methods for detecting correlation changes in synthetic multivariate time series, and provide
an application to some data from behavioral sciences. Applying KCP to running empirical
correlations (Cabrieto et al., 2018b) or to the autocorrelations of a multivariate time series
(Cabrieto et al., 2018a) can make it focus on a specific kind of change —in the covariance
between coordinates or in the autocorrelation structure of each coordinate, respectively—,
as illustrated on synthetic data experiments and two real-world datasets from psychology.

Outline Motivating examples are first provided in Section 2 to highlight the wide appli-
cability of our procedure to various important settings. A comprehensive description of our
kernel change-point detection algorithm (KCP, or Algorithm 1) is provided in Section 3,
where we also discuss algorithmic aspects as well as the practical choice of influential pa-
rameters (Section 3.3). Section 4 exposes some important ideas underlying KCP and then
states the main theoretical results of the paper (Proposition 1 and Theorem 2). Proofs
of these main results have been collected in Section 5, while technical details have been
deferred to Appendices A and B. The practical performance of the kernel change-point de-
tection algorithm is illustrated by experiments on synthetic data in Section 6 and on real
data in Section 7. Section 8 concludes the paper by a short discussion.

Notation. For any a < b, we denote by Ja, bK := [a, b] ∩ N the set of integers between a
and b.

2 The change-point problem

Let X be some measurable set and X1, . . . , Xn ∈ X a sequence of independent X -valued
random variables. For any i ∈ {1, . . . , n}, we denote by PXi the distribution of Xi. The
change-point problem can then be summarized as follows: Given (Xi)1≤i≤n, the goal is to
find the locations of the abrupt changes along the sequence PX1 , . . . , PXn . Note that the
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case of dependent time series is often considered in the change-point literature (Lavielle and
Moulines, 2000; Bardet and Kammoun, 2008; Bardet et al., 2012; Chang et al., 2014); as a
first step, this paper focuses on the independent case for simplicity.

An important example to have in mind is when Xi corresponds to the observation at
time ti = i/n of some random process on [0, 1], and we assume that this process is stationary
over [t?` , t

?
`+1), ` = 0, . . . , D?−1, for some fixed sequence 0 = t?0 < t?1 < · · · < t?D? = 1. Then,

the change-point problem is equivalent to localizing the change-points t?1, . . . , t
?
D?−1 ∈ [0, 1],

which should be possible as the sample size n tends to infinity. Note that we never make such
an asymptotic assumption in the paper, where all theoretical results are non-asymptotic.

Let us now detail some motivating examples of the change-point problem.

Example 1 The set X is R or Rd, and the sequence (PXi)1≤i≤n changes only through its
mean. This is the most classical setting, for which numerous methods have been proposed and
analyzed in the one-dimensional setting (Comte and Rozenholc, 2004; Zhang and Siegmund,
2007; Boysen et al., 2009; Korostelev and Korosteleva, 2011; Fryzlewicz, 2014) as well as
the multi-dimensional case (Picard et al., 2011; Bleakley and Vert, 2011; Hocking et al.,
2013; Soh and Chandrasekaran, 2017; Collilieux et al., 2015).

Example 2 The set X is R or Rd, and the sequence (PXi)1≤i≤n changes only through its
mean and/or its variance (or covariance matrix). This setting is rather classical, at least
in the one-dimensional case, and several methods have been proposed for it (Andreou and
Ghysels, 2002; Picard et al., 2005; Fryzlewicz and Subba Rao, 2014; Cabrieto et al., 2017).

Example 3 The set X is R or Rd, and no assumption is made on the changes in the
sequence (PXi)1≤i≤n. For instance, when data are centered and normalized, as in the audio-
track example (Rabiner and Schäfer, 2007), the mean and the variance of the Xi can be
constant, and only higher-order moments of (PXi)1≤i≤n are changing. Only a few recent
papers deal with (an unknown number of) multiple change-points in a fully nonparametric
framework: Zou et al. (2014) for X = R, Matteson and James (2014) for X = Rd. Note
that assuming X = R and adding some further restrictions on the maximal order of the
moments for which a change can arise in the sequence (PXi)1≤i≤n, it is nevertheless possible
to consider the multivariate sequence ((pj(Xi))0≤j≤d)1≤i≤n, where pj is a polynomial of
degree j for j ∈ {0, . . . , d}, and to use a method made for detecting changes in the mean
(Example 1). For instance with R-valued data, one can take pj(X) = Xj for every 1 ≤ j ≤
d, or pj equal to the j-th Hermite polynomial, as proposed by Lajugie et al. (2014).

Example 4 The set X is the d-dimensional simplex {(p1, . . . , pd) ∈ [0, 1]d such that p1 +
· · ·+pd = 1}. For instance, audio and video data are often represented by histogram features
(Oliva and Torralba, 2001; Lowe, 2004; Rabiner and Schäfer, 2007), as done in Section 7.
In such cases, it is a bad idea to do as if X were Rd-valued, since the Euclidean norm on
Rd is usually a bad distance measure between histogram data.

Example 5 The set X is a set of graphs. For instance, the Xi can represent a social
network (Kossinets and Watts, 2006) or a biological network (Curtis et al., 2012) that
is changing over time (Chen and Zhang, 2015). Then, detecting meaningful changes in
the structure of a time-varying network is a change-point problem. In the case of social
networks, this can be used for detecting the rise of an economic crisis (McCulloh, 2009).
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Example 6 The set X is a set of texts (strings). For instance, text analysis can try to
localize possible changes of authorship within a given text (Chen and Zhang, 2015).

Example 7 The set X is a subset of {A, T,C,G}N, the set of DNA sequences. For instance,
an important question in phylogenetics is to find recombination events from the genome of
individuals of a given species (Knowles and Kubatko, 2010; Ané, 2011). This can be achieved
from a multiple alignment of DNA sequences (Schölkopf et al., 2004) by detecting abrupt
changes (change-points) in the phylogenetic tree at each DNA position, that is, by solving a
change-point problem.

Example 8 The set X is a set of images. For instance, video shot boundary detection
(Cotsaces et al., 2006) or scene detection in videos (Allen et al., 2016) can be cast as
change-point detection problems.

Example 9 The set X is an infinite-dimensional functional space. Such functional data
arise in various fields (see for instance Ferraty and Vieu, 2006, Chapter 2), and the problem
of testing whether there is a change or not in a functional time series has been considered
recently (Ferraty and Vieu, 2006; Berkes et al., 2009; Sharipov et al., 2014).

Other kinds of data could be considered, such as counting data (Cleynen and Lebarbier,
2014; Alaya et al., 2015), qualitative descriptors, as well as composite data, that is, data
Xi that are mixing several above examples.

The goal of the paper is to propose a change-point algorithm that is (i) general enough
to handle all these situations (up to the choice of an appropriate similarity measure on X ),
(ii) in a non parametric framework, (iii) with an unknown number of change-points, and
(iv) that we can analyze theoretically in all these examples simultaneously.

Note also that we want our algorithm to output a set of change-points that are “close
to” the true ones, at least when n is large enough. But in settings where the signal-to-noise
ratio is not large enough to recover all true change-points (for a given n), we do not want
to have false positives. This motivates the non-asymptotic analysis of our algorithm that
we make in this paper. Since our algorithm relies on a model selection procedure, we prove
in Section 4 an oracle inequality, as usually done in non-asymptotic model selection theory.

3 Detecting changes in the distribution with kernels

Our approach for solving the general change-point problem uses positive semidefinite ker-
nels. It can be sketched as follows.

3.1 Kernel change-point algorithm

For any integer D ∈ J1, n+ 1K, the set of sequences of (D − 1) change-points is defined by

T Dn :=
{

(τ0, . . . , τD) ∈ ND+1 / 0 = τ0 < τ1 < τ2 < · · · < τD = n
}

(1)

where τ1, . . . , τD−1 are the change-points, and τ0, τD are just added for notational conve-
nience. Any τ ∈ T Dn is called a segmentation (of {1, . . . , n}) into Dτ := D segments.
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Let k : X × X → R be a positive semidefinite kernel, that is, a measurable function
X × X → R such that for any x1, . . . , xn ∈ X , the n × n matrix (k(xi, xj))1≤i,j≤n is
positive semidefinite. Examples of such kernels are given in Section 3.2. Then, we measure
the quality of any candidate segmentation τ ∈ T Dn with the kernel least-squares criterion
introduced by Harchaoui and Cappé (2007):

R̂n(τ) :=
1

n

n∑
i=1

k(Xi, Xi)−
1

n

D∑
`=1

 1

τ` − τ`−1

τ∑̀
i=τ`−1+1

τ∑̀
j=τ`−1+1

k(Xi, Xj)

 . (2)

In particular when X = R and k(x, y) = xy, we recover the usual least-squares criterion

R̂n(τ) =
1

n

D∑
`=1

τ∑̀
i=τ`−1+1

(
Xi −XJτ`−1+1,τ`K

)2
where XJτ`−1+1,τ`K :=

1

τ` − τ`−1

τ∑̀
j=τ`−1+1

Xj .

Note that Eq. (6) in Section 4.1 provides an equivalent formula for R̂n(τ), which is helpful
for understanding its meaning. Given the criterion (2), we cast the choice of τ as a model
selection problem (as thoroughly detailed in Section 4), which leads to Algorithm 1 below,
that we now briefly comment on.

Input: observations: X1, . . . , Xn ∈ X ,
kernel: k : X × X → R,
constants: c1, c2 > 0 and Dmax ∈ J1, n− 1K.

Step 1: ∀D ∈ J1, DmaxK, compute (by dynamic programming):

τ̂(D) ∈ argminτ∈T Dn
{
R̂n(τ)

}
and R̂n

(
τ̂(D)

)
Step 2: find:

D̂ ∈ argmin1≤D≤Dmax

{
R̂n
(
τ̂(D)

)
+

1

n

(
c1 log

(
n− 1

D − 1

)
+ c2D

)}
.

Output: sequence of change-points: τ̂ = τ̂
(
D̂
)
.

Algorithm 1: kernel change-point algorithm (KCP)

• Step 1 of KCP consists in choosing the “best” segmentation with D segments, that
is, the minimizer of the kernel least-squares criterion R̂n(·) over T Dn , for every D ∈
J1, DmaxK.

• Step 2 of KCP chooses D by model selection, using a penalized empirical criterion.
A major contribution of this paper lies in the building and theoretical justification
of the penalty n−1(c1 log

(
n−1
D−1

)
+ c2D), see Sections 4–5; a simplified penalty, of the

form D
n (c1 log( nD ) + c2), would also be possible, see Section 4.5.

• Practical issues (computational complexity and choice of constants c1, c2, Dmax) are
discussed in Section 3.3. Let us only emphasize here that KCP is computationally
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tractable; its most expensive part is the minimization problem of Step 1, which can be
done by dynamic programming (see Harchaoui and Cappé, 2007; Celisse et al., 2018).
An implementation of KCP in python can be found in the ruptures package Truong
et al. (2018).

3.2 Examples of kernels

KCP can be used with various sets X (not necessarily vector spaces) as long as a positive
semidefinite kernel on X is available. An important issue is to design relevant kernels,
that are able to capture important features of the data for a given change-point problem,
including non-vectorial data —for instance, simplicial data (histograms), texts or graphs
(networks), see Section 2. The question of choosing a kernel is discussed in Section 8.2.

Classical kernels can be found in the books by Schölkopf and Smola (2001), Shawe-
Taylor and Cristianini (2004) and Schölkopf et al. (2004) for instance. Let us mention a
few of them:

• When X = Rd, klin(x, y) = 〈x, y〉Rd defines the linear kernel. When d = 1, KCP then
coincides with the algorithm proposed by Lebarbier (2005).

• When X = Rd, kGh (x, y) = exp[−‖x− y‖2 /(2h2)] defines the Gaussian kernel with
bandwidth h > 0, which is used in the experiments of Section 6.

• When X = Rd, kLh (x, y) = exp[−‖x−y‖/h] defines the Laplace kernel with bandwidth
h > 0.

• When X = Rd, keh(x, y) = exp(〈x, y〉Rd/h) defines the exponential kernel with band-
width h > 0. Note that, unlike the Gaussian and Laplace kernels, the exponential
kernel is not translation-invariant.

• When X = R, kHh (x, y) =
∑5

j=1Hj,h(x)Hj,h(y), corresponds to the Hermite kernel,

where Hj,h(x) = 2j+1
√
πj!e−x

2/(2h2)(−1)je−x
2/2(∂/∂x)j(e−x

2/2) denotes the j-th Her-
mite function with bandwidth h > 0. This kernel is used in Section 6.

• When X is the d-dimensional simplex as in Example 4, the χ2-kernel can be defined

by kχ
2

h (x, y) = exp
(
− 1
h·d
∑d

i=1
(xi−yi)2
xi+yi

)
for some bandwidth h > 0. An illustration

of its behavior is provided in the simulation experiments of Sections 6 and 7.

Note that more generally, Sejdinovic et al. (2013) proved that positive semidefinite kernels
can be defined on any set X for which a semimetric of negative type is used to measure
closeness between points. The so-called energy distance between probability measures is
an example (Matteson and James, 2014). In addition, specific kernels have been designed
for various kinds of structured data, including all the examples of Section 2 (Cuturi et al.,
2005; Shervashidze, 2012; Rakotomamonjy and Canu, 2005; Vedaldi and Zisserman, 2012).
Kernels can also be built from convolutional neural networks, with successful applications
in computer vision (Mairal et al., 2014; Paulin et al., 2017).

Let us finally remark that KCP can also be used when k is not a positive semidefinite
kernel; its computational complexity remains unchanged, but we might loose the theoretical
guarantees of Section 4.
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3.3 Practical issues

Computational complexity. The discrete optimization problem at Step 1 of KCP is
apparently hard to solve since, for each D, there are

(
n−1
D−1

)
segmentations of {1, . . . , n}

into D segments. Fortunately, as shown by Harchaoui and Cappé (2007), this optimization
problem can be solved efficiently by dynamic programming. In the special case of a linear
kernel, we recover the classical dynamic programming algorithm for detecting changes in
mean (Fisher, 1958; Auger and Lawrence, 1989; Kay, 1993).

Denoting by Ck the cost of computing k(x, y) for some given x, y ∈ X , the computational
cost of a naive implementation of Step 1 —computing each coefficient (i, j) of the cost
matrix independently— then is O(Ckn2+Dmaxn

4) in time and O(Dmaxn+n2) in space. The
computational complexity can actually be O((Ck+Dmax)n2) in time and O(Dmaxn) in space
as soon as one either uses the summed area table or integral image technique as in (Potapov
et al., 2014) or optimizes the interplay of the dynamic programming recursions and cost
matrix computations (Celisse et al., 2018). For given constants Dmax and c1, c2, Step 2
is straightforward since it consists in a minimization problem among Dmax terms already
stored in memory. Therefore, the overall complexity of KCP is at most O((Ck +Dmax)n2)
in time and O(Dmaxn) in space.

Setting the constants c1, c2. At Step 2 of KCP, two constants c1, c2 > 0 appear in the
penalty term. Theoretical guarantees (Theorem 2 in Section 4) suggest to take c1 = c2 = c
large enough, but the lower bound on c in Theorem 2 is pessimistic, and the optimal value of
c certainly depends on unknown features of the data such as their “variance”, as discussed
after Theorem 2. In practice the constants c1, c2 must be chosen from data. To do so,
we propose a fully data-driven method, based upon the “slope heuristics” (Baudry et al.,
2012), that is explained in Section 6.2. Another way of choosing c1, c2 is described in
supplementary material (Section B.3).

Setting the constant Dmax. KCP requires to specify the maximal dimension Dmax

of the segmentations considered, a choice that has three main consequences. First, the
computational complexity of KCP is affine in Dmax, as discussed above. Second, if Dmax

is too small —smaller than the number of true change-points that can be detected—, the
segmentation τ̂ provided by the algorithm will necessarily be too coarse. Third, when the
slope heuristics is used for choosing c1, c2, taking Dmax larger than the true number of
change-points might not be sufficient: better values for c1, c2 can be obtained by taking
Dmax larger, up to n. From our experiments, it seems that Dmax ≈ n/

√
log n is large

enough to provide good results.

3.4 Related change-point algorithms

In addition to the references given in the Introduction, let us mention a few change-point
algorithms to which KCP is more closely related.

First, some two-sample (or homogeneity) tests based on kernels have been suggested.
They tackle a simpler problem than the general change-point problem described in Section 2.
Among them, Gretton et al. (2012a) proposed a two-sample test based on a U-statistic of
order two, called the maximum mean discrepancy (MMD). A related family of two-sample
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tests, called B-tests, has been proposed by Zaremba et al. (2013); B-tests have also been
used by Li et al. (2015, 2019) for localizing a single change-point. Harchaoui et al. (2008)
proposed a studentized kernel-based test statistic for testing homogeneity. Resampling
methods —(block) bootstrap and permutations— have also been proposed for choosing the
threshold of several kernel two-sample tests (Fromont et al., 2012; Chwialkowski et al., 2014;
Sharipov et al., 2014).

Second, Harchaoui and Cappé (2007) proposed a kernel change-point algorithm when
the true number of segments D? is known, which corresponds to Step 1 of KCP. The present
paper proposes a data-driven choice of D for which theoretical guarantees are proved.

Third, when X = R and k(x, y) = xy, R̂n(τ) is the usual least-squares risk and Step 2 of
KCP is similar to the penalization procedures proposed by Comte and Rozenholc (2004) and
Lebarbier (2005) for detecting changes in the mean of a one-dimensional signal. We refer
readers familiar with model selection techniques to Section 4.1 for an equivalent formulation
of KCP —in more abstract terms— that clearly emphasizes the links between KCP and
these penalization procedures.

4 Theoretical analysis

We now provide theoretical guarantees for KCP. We start by reformulating it in an abstract
way, which enlightens how it works.

4.1 Abstract formulation of KCP

Let H = Hk denote the reproducing kernel Hilbert space (RKHS) associated with the
positive semidefinite kernel k : X × X → R. The canonical feature map Φ : X 7→ H is
then defined by Φ(x) = k(x, ·) ∈ H for every x ∈ X . A detailed presentation of positive
semidefinite kernels and related notions can be found in several books (Schölkopf and Smola,
2001; Cucker and Zhou, 2007; Steinwart and Christmann, 2008).

Let us define Yi = Φ(Xi) ∈ H for every i ∈ {1, . . . , n}, Y = (Yi)1≤i≤n ∈ Hn, Tn :=⋃n
D=1 T Dn the set of segmentations —see Eq. (1)—, and for every τ ∈ Tn,

Fτ :=
{
f = (f1, . . . , fn) ∈ Hn s.t. fτ`−1+1 = · · · = fτ` ∀1 ≤ ` ≤ Dτ

}
, (3)

which is a linear subspace of Hn. We also define on Hn the canonical scalar product by
〈f, g〉 :=

∑n
i=1 〈fi, gi〉H for f, g ∈ Hn, and we denote by ‖·‖ the corresponding norm. Then,

for any g ∈ Hn,

Πτg := argminf∈Fτ

{
‖f − g‖2

}
(4)

is the orthogonal projection of g ∈ Hn onto Fτ , and satisfies

∀g ∈ Hn, ∀1 ≤ ` ≤ Dτ , ∀i ∈ Jτ`−1 + 1, τ`K, (Πτg)i =
1

τ` − τ`−1

τ∑̀
j=τ`−1+1

gj . (5)

The proof of this statement has been deferred to Appendix A.1.
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Following Harchaoui and Cappé (2007), the empirical risk R̂n(τ) defined by Eq. (2) can
be rewritten as

R̂n(τ) =
1

n
‖Y − µ̂τ‖2 where µ̂τ = ΠτY , (6)

as proved in Appendix A.1.

For each D ∈ J1, DmaxK, Step 1 of KCP consists in finding a segmentation τ̂(D) in D
segments such that

τ̂(D) ∈ argminτ∈T Dn

{∥∥Y − µ̂τ∥∥2} = argminτ∈T Dn

{
inf
f∈Fτ

n∑
i=1

∥∥Φ(Xi)− fi
∥∥2} ,

which is the “kernelized” version of the classical least-squares change-point algorithm (Lebar-
bier, 2005). Since the penalized criterion of Step 2 is similar to that of Comte and Rozenholc
(2004) and Lebarbier (2005), we can see KCP as a “kernelization” of these penalized least-
squares change-point procedures.

Let us emphasize that building a theoretically-grounded penalty for such a kernel least-
squares change-point algorithm is not straightforward. For instance, we cannot apply the
model selection results by Birgé and Massart (2001) that were used by Comte and Rozen-
holc (2004) and Lebarbier (2005). Indeed, a Gaussian homoscedastic assumption is not
realistic for general Hilbert-valued data, and we have to consider possibly heteroscedastic
data for which we assume only that Yi = Φ(Xi) is bounded in H —see Assumption (Db)
in Section 4.3. Note that unbounded data Xi can satisfy Assumption (Db), for instance
by choosing a bounded kernel such as the Gaussian or Laplace ones. In addition, dealing
with Hilbert-valued random variables instead of (multivariate) real variables requires a new
concentration inequality, see Proposition 1 in Section 4.4.

4.2 Intuitive analysis

Section 4.1 shows that KCP can be seen as a kernelization of change-point algorithms
focusing on changes of the mean of the signal (Lebarbier, 2005, for instance). Therefore,
KCP is looking for changes in the “mean” of Yi = Φ(Xi) ∈ H, provided that such a notion
can be defined.

If H is separable and E[k(Xi, Xi)] < +∞, we can define the (Bochner) mean µ?i ∈ H of
Φ(Xi) (Ledoux and Talagrand, 1991), also called the mean element of PXi , by

∀g ∈ H, 〈µ?i , g〉H = E
[
g(Xi)

]
= E

[
〈Yi, g〉H

]
. (7)

Then, we can write

∀1 ≤ i ≤ n, Yi = µ?i + εi ∈ H where εi := Yi − µ?i .

The variables (εi)1≤i≤n are independent and centered —that is, ∀g ∈ H, E[〈εi, g〉H] = 0.
So, we can understand µ̂τ as the least-squares estimator over Fτ of µ? = (µ?1, . . . , µ

?
n) ∈ Hn.
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An interesting case is when k is a characteristic kernel (Fukumizu et al., 2008), or equiv-
alently, when Hk is probability-determining (Fukumizu et al., 2004a,b). Then any change
in the distribution PXi induces a change in the mean element µ?i . In such settings, we can
expect KCP to be able to detect any change in the distribution PXi , at least asymptotically.
For instance the Gaussian kernel is characteristic (Fukumizu et al., 2004b, Theorem 4), and
general sufficient conditions for k to be characteristic are known (Sriperumbudur et al.,
2010, 2011).

Note that Sharipov et al. (2014) suggest to use k≤(x, y) = 1x≤y as a “kernel” within a
two-sample test, in order to look for any change of the distribution of real-valued data Xi

(Example 3). This idea is similar to our proposal of using KCP with a characteristic kernel
for tackling Example 3, even if we do not advise to take k = k≤ within KCP. Indeed, when

k = k≤, R̂n(τ) = 1
2 −

Dτ
2n as soon as the Xi are all different so that KCP becomes useless.

This illustrates that using a kernel which is not symmetric positive definite should be done
cautiously.

4.3 Notation and assumptions

Throughout the paper, we assume thatH is separable, which is kind of a minimal assumption
for two reasons: it allows to define the mean element —see Eq. (7)—, and most reasonable
examples satisfy this requirement (Dieuleveut and Bach, 2014, p. 4). Let us further assume

∃M ∈ (0,+∞) , ∀i ∈ {1, . . . , n}, ‖Yi‖2H = ‖Φ(Xi)‖2H = k(Xi, Xi) ≤M2 a.s. (Db)

For every 1 ≤ i ≤ n, we also define the “variance” of Yi by

vi := E
[∥∥Φ(Xi)− µ?i

∥∥2
H

]
= E

[
k(Xi, Xi)

]
−
∥∥µ?i ∥∥2H = E

[
k(Xi, Xi)− k(Xi, X

′
i)
]

(8)

where X ′i is an independent copy of Xi, and vmax := max1≤i≤n vi. Let us make a few
remarks.

• If (Db) holds true, then the mean element µ?i exists since E[
√
k(Xi, Xi)] < ∞, the

variances vi are finite and smaller than vmax ≤M2.

• If (Db) holds true, then Yi admits a covariance operator Σi that is trace-class and
vi = tr(Σi).

• If k is translation invariant, that is, X is a vector space and k(x, x′) = k(x − x′) for
every x, x′ ∈ X , and some measurable function k : X → R, then (Db) holds true with
M2 = k(0) and vi = k(0)−‖µ?i ‖2H. For instance the Gaussian and Laplace kernels are
translation invariant (see Section 3.2).

• Let us consider the case of the linear kernel (x, y) 7→ 〈x, y〉 on X = Rd. If E[‖Xi‖2Rd ] <
∞, then, vi = tr(Σi) where Σi is the covariance matrix of Xi. In addition, (Db) holds
true if and only if ‖Xi‖Rd ≤M a.s. for all i.
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4.4 Concentration inequality for some quadratic form of Hilbert-valued
random variables

Our main theoretical result, stated in Section 4.5, relies on two concentration inequalities
for some linear and quadratic functionals of Hilbert-valued vectors. Here we state the
concentration result that we prove for the quadratic term, which is significantly different
from existing results and can be of independent interest.

Proposition 1 (Concentration of the quadratic term) Let τ ∈ Tn and recall that Πτ

is the orthogonal projection onto Fτ in Hn defined by Eq. (4). Let X1, . . . , Xn be independent
X -valued random variables and assume that (Db) holds true, so that we can define ε =
(ε1, . . . , εn) ∈ Hn as in Section 4.1. Then for every x > 0, with probability at least 1− e−x,

‖Πτε‖2 − E
[
‖Πτε‖2

]
≤ 14M2

3

(
x+ 2

√
2xDτ

)
.

Proposition 1 is proved in Section 5.4. The proof relies on a combination of Bernstein’s and
Pinelis-Sakhanenko’s inequalities. Note that the proof of Proposition 1 also shows that for
every x > 0, with probability at least 1− e−x,

‖Πτε‖2 − E
[
‖Πτε‖2

]
≥ −14M2

3

(
x+ 2

√
2xDτ

)
.

Previous concentration results for quantities such as ‖Πτε‖2 or ‖Πτε‖ do not imply
Proposition 1 —even up to numerical constants. Indeed, they either assume that ε is
a Gaussian vector, or they involve much larger deviation terms (see Section 5.4.3 for a
detailed discussion of these results).

4.5 Oracle inequality for KCP

Similarly to the results of Comte and Rozenholc (2004) and Lebarbier (2005) in the one-
dimensional case, we state below a non-asymptotic oracle inequality for KCP. First, we
define the quadratic risk of any µ ∈ Hn as an estimator of µ? by

R(µ) =
1

n
‖µ− µ?‖2 =

1

n

n∑
i=1

‖µi − µ?i ‖2H .

Theorem 2 We consider the framework and notation introduced in Sections 2–4. Let
C ≥ 0 be some constant. Assume that (Db) holds true and that pen : Tn → R is some
penalty function satisfying

∀τ ∈ Tn, pen(τ) ≥ CM2

n

[
log

(
n− 1

Dτ − 1

)
+Dτ

]
. (9)

Then, some numerical constant L1 > 0 exists such that the following holds: if C ≥ L1, for
every y ≥ 0, an event of probability at least 1− e−y exists on which, for every

τ̂ ∈ argminτ∈Tn

{
R̂n(τ) + pen(τ)

}
, (10)

we have

R(µ̂τ̂ ) ≤ 2 inf
τ∈Tn

{
R(µ̂τ ) + pen(τ)

}
+

83yM2

n
. (11)
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Theorem 2 is proved in Section 5.5. In addition, Section 5.1 provides some insight about the
construction of the penalty suggested by Eq. (9). In a few words, the idea is to take a penalty
such that the empirical criterion R̂n(τ) + pen(τ) in Eq. (10) mimics (approximately) the
oracle criterion R(µ̂τ ). At least, the penalty must be large enough so that R̂n(τ)+pen(τ) ≥
R(µ̂τ ) holds true simultaneously for all τ ∈ Tn (up to technical details, see Section 5).

Theorem 2 applies to the segmentation τ̂ provided by KCP when c1, c2 ≥ L1M
2. The-

orem 2 shows that µ̂τ̂ estimates well the “mean” µ? ∈ Hn of the transformed time series
Y1 = Φ(X1), . . . , Yn = Φ(Xn). Such a non-asymptotic oracle inequality is the usual way to
theoretically validate a model selection procedure (Birgé and Massart, 2001, for instance).
It is therefore a natural way to theoretically validate any change-point detection procedure
based on model selection. As argued by Lebarbier (2005) for instance, proving such a non-
asymptotic result is necessary for taking into account situations where some changes are
too small to be detected —they are “below the noise level”. By defining the performance
of τ̂ as the quadratic risk of µ̂τ̂ as an estimator of µ?, a non-asymptotic oracle inequality
such as Eq. (11) is the natural way to prove that KCP works well for finite sample size
and for a set X that can have a large dimensionality (possibly much larger than the sample
size n). The consistency of KCP for estimating the change-point locations, which is outside
the scope of this paper, is discussed in Section 8.1.

The constant 2 in front of the first term in Eq. (11) has no special meaning, and could
be replaced by any quantity strictly larger than 1, at the price of enlarging L1 and 83.

The value 2L1M
2 suggested by Theorem 2 for the constants c1, c2 within KCP should

not be used in practice because it is likely to lead to a conservative choice for two reasons.
First, the minimal value L1 for the constant C suggested by the proof of Theorem 2 depends
on the numerical constants appearing in the deviation bounds of Propositions 1 and 3, which
probably are not optimal. Second, the constant M2 in the penalty is probably pessimistic
in several frameworks. For instance with the linear kernel and Gaussian data belonging
to X = R, (Db) is not satisfied, but other similar oracle inequalities have been proved
with M2 replaced by the residual variance (Lebarbier, 2005). In practice, as we do in the
experiments of Section 6, we recommend to use a data-driven value for the leading constant
C in the penalty, as explained in Section 3.3.

Theorem 2 also applies to KCP with simplified penalty shapes. Indeed, for any D ∈
{1, . . . , n}, (

n− 1

D − 1

)
=
D

n

(
n

D

)
≤
(
n

D

)
≤ nD

D!
≤
(ne

D

)D
so that Theorem 2 applies to the penalty D

n (c1 log( nD )+c2) —similar to the one of Lebarbier
(2005)— as soon as c1, c2 ≥ 2L1M

2. A BIC-type penalty CD log(n)/n is also covered by
Theorem 2 provided that C ≥ 3.9L1M

2 and n ≥ 2, even if we do not recommend to use it
given our experiments —see Section 6.3.

A nice feature of Theorem 2 is that it holds under mild assumptions: we only need the
data Xi to be independent and to have (Db) satisfied. As noticed in Section 4.3, (Db) holds
true for translation-invariant kernel such as the Gaussian and Laplace kernels. Compared
to previous results (Comte and Rozenholc, 2004; Lebarbier, 2005), we do not need the data
to be Gaussian or homoscedastic. Furthermore, the independence assumption can certainly
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be relaxed: to do so, it would be sufficient to prove concentration inequalities similar to
Propositions 1 and 3 for some dependent Xi.

In the particular setting where X = R and k is the linear kernel (x, y) 7→ xy, Theorem 2
provides an oracle inequality similar to the one proved by Lebarbier (2005) for Gaussian and
homoscedastic real-valued data. The price to pay for extending this result to heteroscedastic
Hilbert-valued data is rather mild: we only assume (Db) and replace the residual variance
by M2.

Apart from the results already mentioned, a few oracle inequalities have been proved for
change-point procedures, for real-valued data with a multiplicative penalty (Baraud et al.,
2009), for discrete data (Akakpo, 2011), for counting data with a total-variation penalty
(Alaya et al., 2015), for counting data with a penalized maximum-likelihood procedure
(Cleynen and Lebarbier, 2014) and for data distributed according to an exponential family
(Cleynen and Lebarbier, 2017). Among these oracle inequalities, only the result by Akakpo
(2011) is more precise than Theorem 2 (there is no log(n) factor compared to the oracle
loss), at the price of using a smaller (dyadic) collection of possible segmentations, hence a
worse oracle performance in general.

5 Main proofs

We now prove the main results of the paper, Theorem 2 and Proposition 1.

5.1 Outline of the proof of Theorem 2

As usual for proving an oracle inequality (see Arlot, 2014, Section 2.2), we remark that by
Eq. (10), for every τ ∈ Tn,

R̂n(µ̂τ̂ ) + pen(τ̂) ≤ R̂n(µ̂τ ) + pen(τ) .

Therefore,

R(µ̂τ̂ ) + pen(τ̂)− penid(τ̂) ≤ R(µ̂τ ) + pen(τ)− penid(τ) (12)

where ∀τ ∈ T , penid(τ) := R(µ̂τ )− R̂n(µ̂τ ) +
1

n
‖ε‖2 . (13)

The idea of the proof is that if we had pen(τ) ≥ penid(τ) for every τ ∈ Tn, we would get
an oracle inequality similar to Eq. (11). What remains to obtain is a deterministic upper
bound on the ideal penalty penid(τ) that holds true simultaneously for all τ ∈ Tn on a large
probability event. To this aim, our approach is to compute E[penid(τ)] and to show that
penid(τ) concentrates around its expectation for every τ ∈ Tn (Sections 5.2–5.4). Then we
use a union bound as detailed in Section 5.5. A similar strategy has been used for instance
by Comte and Rozenholc (2004) and Lebarbier (2005) in the specific context of change-point
detection.

Note that we prove below a slightly weaker result than pen(τ) ≥ penid(τ), which is
nevertheless sufficient to obtain Eq. (11). Remark also that Eq. (12) would be true if the
constant n−1 ‖ε‖2 in the definition (13) of penid was replaced by any quantity independent
from τ ; the reasons for this specific choice appear in the computations below.

14



5.2 Computation of the ideal penalty

From Eq. (13) it results that for every τ ∈ Tn,

n× penid(τ) = ‖µ̂τ − µ?‖2 − ‖µ̂τ − Y ‖2 + ‖ε‖2

= ‖µ̂τ − µ?‖2 − ‖µ̂τ − µ? − ε‖2 + ‖ε‖2

= 2 〈µ̂τ − µ?, ε〉
= 2
〈
Πτ (µ? + ε)− µ?, ε

〉
= 2 〈Πτµ

? − µ?, ε〉+ 2 〈Πτε, ε〉
= 2 〈Πτµ

? − µ?, ε〉+ 2 ‖Πτε‖2 (14)

since Πτ is an orthogonal projection. The next two sections focus separately on the two
terms appearing in Eq. (14).

5.3 Concentration of the linear term

We prove in Section A.2 the following concentration inequality for the linear term in Eq. (14),
mostly by applying Bernstein’s inequality.

Proposition 3 (Concentration of the linear term) If (Db) holds true, then for every
x > 0, with probability at least 1− 2e−x,

∀θ > 0 ,
∣∣∣〈(I −Πτ )µ?, Φ(X)− µ?

〉∣∣∣ ≤ θ ‖Πτµ
? − µ?‖2 +

(
vmax

2θ
+

4M2

3

)
x . (15)

5.4 Dealing with the quadratic term

We now focus on the quadratic term in the right-hand side of Eq. (14).

5.4.1 Preliminary computations

We start by providing a useful closed-form formula for ‖Πτε‖2 and by computing its expec-
tation. First, a straightforward consequence of Eq. (5) is that

‖Πτε‖2 =

Dτ∑
`=1

 1

τ` − τ`−1

∥∥∥∥∥
τ∑̀

i=τ`−1+1

εi

∥∥∥∥∥
2

H

 (16)

=

Dτ∑
`=1

[
1

τ` − τ`−1

∑
τ`−1+1≤i,j≤τ`

〈εi, εj〉H

]
. (17)

Second, we remark that for every i, j ∈ {1, . . . , n},

E
[
〈εi, εj〉H

]
= E

[
〈Φ(Xi), Φ(Xj)〉H

]
− E

[
〈µ?i , Φ(Xj)〉H

]
− E

[〈
Φ(Xi), µ

?
j

〉
H

]
+
〈
µ?i , µ

?
j

〉
H

= E
[
〈Φ(Xi), Φ(Xj)〉H

]
−
〈
µ?i , µ

?
j

〉
H

= 1i=j

(
E [k(Xi, Xi)]− ‖µ?i ‖

2
H

)
= 1i=jvi. (18)
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Combining Eq. (17) and (18), we get

E
[
‖Πτε‖2

]
=

Dτ∑
`=1

 1

τ` − τ`−1

τ∑̀
i=τ`−1+1

vi

 =

Dτ∑
`=1

vτ` , (19)

where vτ` := 1
τ`−τ`−1

∑τ`
i=τ`−1+1 vi.

5.4.2 Concentration: proof of Proposition 1

This proof is inspired from that of a concentration inequality by Sauvé (2009) in the context
of regression with real-valued non-Gaussian noise. Let us define

T` :=
1

τ` − τ`−1

∥∥∥∥∥∥
τ∑̀

j=τ`−1+1

εj

∥∥∥∥∥∥
2

H

, so that ‖Πτε‖2 =
∑

1≤`≤Dτ

T`

by Eq. (16). Since the real random variables (T`)1≤`≤Dτ are independent, we get a concen-
tration inequality for their sum ‖Πτε‖2 via Bernstein’s inequality (Theorem B.6) as long as
T` satisfies some moment conditions. The rest of the proof consists in showing such moment
bounds by using Pinelis-Sakhanenko’s deviation inequality (Proposition B.7).

First, note that (Db) implies that ‖εi‖H ≤ 2M almost surely for every i by Lemma A.5,
hence ‖

∑τ`
i=τ`−1+1 εi‖H ≤ 2(τ` − τ`−1)M a.s. for every 1 ≤ ` ≤ Dτ . Then for every q ≥ 2

and 1 ≤ ` ≤ Dτ ,

E
[
T q`
]

=
1

(τ` − τ`−1)q

∫ 2(τ`−τ`−1)M

0
2qx2q−1P

∥∥∥∥∥∥
τ∑̀

i=τ`−1+1

εi

∥∥∥∥∥∥
H

≥ x

 dx . (20)

Second, since ‖εi‖H ≤ 2M almost surely and E
[
‖εi‖2H

]
= vi ≤ M2 for every i, we get

that for every p ≥ 2 and 1 ≤ ` ≤ Dτ ,

τ∑̀
i=τ`−1+1

E
[
‖εi‖pH

]
≤ p!

2

 τ∑̀
j=τ`−1+1

vj

(2M

3

)p−2
≤ p!

2
× (τ` − τ`−1)M2 ×

(
2M

3

)p−2
.

Hence, the assumptions of Pinelis-Sakhanenko’s deviation inequality (Pinelis and Sakha-
nenko, 1986) —which is recalled by Proposition B.7— are satisfied with c = 2M/3 and
σ2 = (τ` − τ`−1)M2, and we get that for every x ∈ [0, 2(τ` − τ`−1)M ]

P

∥∥∥∥∥∥
τ∑̀

i=τ`−1+1

εi

∥∥∥∥∥∥
H

≥ x

 ≤ 2 exp

(
− x2

2
[
(τ` − τ`−1)M2 + 2Mx

3

])

≤ 2 exp

(
− 3x2

14(τ` − τ`−1)M2

)
.
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Together with Eq. (20), we obtain that

E
[
T q`
]
≤ 4q

(τ` − τ`−1)q

∫ 2(τ`−τ`−1)M

0
x2q−1 exp

[
− 3x2

14(τ` − τ`−1)M2

]
dx

≤ 4q

(
7M2

3

)q ∫ +∞

0
u2q−1 exp

[
−u

2

2

]
du

= 2q−1(q − 1)!× 4q

(
7M2

3

)q
= 2× (q!)

[
14M2

3

]q
, (21)

since for every q ≥ 1, ∫ +∞

0
u2q−1 exp(−u2/2) du = 2q−1(q − 1)! .

Finally summing Eq. (21) over 1 ≤ ` ≤ Dτ , it comes∑
1≤`≤Dτ

E
[
T q`
]
≤ 2× (q!)

[
14M2

3

]q
Dτ

=
q!

2
×Dτ

[
28M2

3

]2
×
[

14M2

3

]q−2
.

Then, condition (B.33) of Bernstein’s inequality holds true with

v = Dτ

[
28M2

3

]2
and c =

14M2

3
.

Therefore, Bernstein’s inequality (Massart, 2007, Proposition 2.9) —which is recalled by
Proposition B.6— shows that for every x > 0, with probability at least 1− e−x,

‖Πτε‖2 − E
[
‖Πτε‖2

]
≤
√

2vx+ cx

=
√

2Dτx
28M2

3
+

14M2

3
x

=
14M2

3

(
2
√

2Dτx+ x
)
. �

5.4.3 Why do we need a new concentration inequality?

We now review previous concentration results for quantities such as ‖Πτε‖2 or ‖Πτε‖,
showing that they are not sufficient for our needs, hence requiring a new result such as
Proposition 1.

First, when ε ∈ Rn is a Gaussian isotropic vector, ‖Πτε‖2 is a chi-square random variable
for which concentration tools have been developed. Such results have been used by Birgé
and Massart (2001) and by Lebarbier (2005) for instance. They cannot be applied here
since ε cannot be assumed Gaussian, and the εj do not necessarily have the same variance.
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Second, Eq. (17) shows that ‖Πτε‖2 is a U-statistic of order 2. Some tight exponential
concentration inequalities exist for such quantities when εj ∈ R (Houdré and Reynaud-
Bouret, 2003) and when εj belongs to a general measurable set (Giné and Nickl, 2016,
Theorem 3.4.8). In both results, a term of order M2x2 appears in the deviations, which is
too large because the proof of Theorem 2 relies on Proposition 1 with x � Dτ : we really
need a smaller deviation term, as in Proposition 1 where it is proportional to M2x.

Third, since

‖Πτε‖ = sup
f∈Hn,‖f‖=1

∣∣〈f, Πτε〉
∣∣ = sup

f∈Hn,‖f‖=1

∣∣ n∑
i=1

〈fi, (Πτε)i〉H
∣∣ ,

Talagrand’s inequality (Boucheron et al., 2013, Corollary 12.12) provides a concentration
inequality for ‖Πτε‖ around its expectation. More precisely, we can get the following result,
which is proved in supplementary material (Section B.2).

Proposition 4 If (Db) holds true, then for every x > 0 with probability at least 1− 2e−x,

∣∣‖Πτε‖ − E
[
‖Πτε‖

]∣∣ ≤√2x

(
4ME

[
‖Πτε‖

]
+ max

1≤`≤Dτ
vτ`

)
+

2Mx

3
. (22)

Therefore, in order to get a concentration inequality for ‖Πτε‖2, we have to square Eq. (22)
and we necessarily get a deviation term of order M2x2. As with the U-statistics approach,
this is too large for our needs.

Fourth, given Eq. (16), it is also natural to think of Pinelis-Sakhanenko’s inequal-
ity (Pinelis and Sakhanenko, 1986), but this result alone is not precise enough because
it is a deviation inequality, and not a concentration inequality. It is nevertheless a key
ingredient in our proof of Proposition 1.

5.5 Oracle inequality: proof of Theorem 2

We now end the proof of Theorem 2 as explained in Section 5.1.
Upper bound on penid(τ) for every τ ∈ Tn. First, by Eq. (14) for every τ ∈ Tn,

penid(τ) =
1

n

(
‖µ̂τ − µ?‖2 − ‖µ̂τ − Y ‖2 + ‖ε‖2

)
=

2

n
‖Πτε‖2 −

2

n

〈
(I −Πτ )µ?, ε

〉
. (23)

In other words, penid(τ) is the sum of two terms, for which Propositions 1 and 3 provide
concentration inequalities.

On the one hand, by Proposition 1 under (Db), for every τ ∈ Tn and x ≥ 0, with
probability at least 1− e−x we have

2

n
‖Πτε‖2 ≤

2

n

(
E
[
‖Πτε‖2

]
+

14M2

3

(
x+ 2

√
2xDτ

))
(24)

≤ 2M2

n

(
Dτ +

14x

3
+

28

3

√
2xDτ

)
(25)

since

E
[
‖Πτε‖2

]
=

Dτ∑
j=1

vτj ≤ DτM
2

18



by Eq. (19). On the other hand, by Proposition 3 under (Db), for every τ ∈ Tn and x ≥ 0,
with probability at least 1− 2e−x we have

∀θ > 0,
2

n

∣∣∣〈(I −Πτ )µ?, ε
〉∣∣∣ ≤ 2θ

n
‖Πτµ

? − µ?‖2 +
2

n

(
vmax

2θ
+

4M2

3

)
x

≤ 2θ

n
‖Πτµ

? − µ?‖2 +
xM2

n

(
θ−1 +

8

3

)
. (26)

For every τ ∈ Tn and x ≥ 0, let Ωτ
x be the event on which Eq. (25) and (26) hold true. A

union bound shows that P(Ωτ
x) ≥ 1−3e−x. Furthermore, combining Eq. (23), (25) and (26)

shows that on Ωτ
x, for every θ > 0,

penid(τ) ≤ 2M2

n

(
Dτ +

14x

3
+

28

3

√
2xDτ

)
+

2θ

n
‖Πτµ

? − µ?‖2 +
xM2

n

(
θ−1 +

8

3

)
≤ 2θR(µ̂τ ) +

M2

n

[
2Dτ +

(
θ−1 +

36

3

)
x+

56

3

√
2xDτ

]
(27)

using that n−1‖Πτµ
?−µ?‖2 = R(Πτµ

?) ≤ R(µ̂τ ) by definition of the orthogonal projection
Πτ , and

penid(τ) ≥ − 2

n

〈
(I −Πτ )µ?, ε

〉
≥ −2θ

n
‖Πτµ

? − µ?‖2 − xM2

n

(
θ−1 +

8

3

)
≥ −2θR(µ̂τ )− xM2

n

(
θ−1 +

8

3

)
. (28)

Union bound over the models and conclusion. Let y ≥ 0 be fixed and let us define
the event Ωy =

⋂
τ∈Tn Ωτ

x(τ,y) where for every τ ∈ Tn,

x(τ, y) := y + log

(
3

e− 1

)
+Dτ + log

(
n− 1

Dτ − 1

)
.

Then, since

Card {τ ∈ Tn |Dτ = D} =

(
n− 1

D − 1

)
for every D ∈ {1, . . . , n}, a union bound shows that

P(Ωy) ≥ 1−
∑
τ∈Tn

P
(

Ω
τ
x(τ,y)

)
≥ 1− 3

n∑
D=1

e−y−log(
3

e−1)−D = 1− (e− 1)e−y
n∑

D=1

e−D

≥ 1− e−y .

In addition, on Ωy, for every τ ∈ Tn, since Eq. (27) and (28) hold true with x = x(τ, y) ≥
Dτ , taking θ = 1/6, we get that

−26

3

M2x(τ, y)

n
− 1

3
R(µ̂τ ) ≤ penid(τ) ≤ 1

3
R(µ̂τ ) +

(
20 +

56
√

2

3

)
M2x(τ, y)

n
.
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Let us define

κ1 := 20 +
56
√

2

3
and κ2 :=

26

3
,

and assume that C ≥ κ1. Then, using Eq. (9), we have

penid(τ) ≤ 1

3
R(µ̂τ ) + pen(τ) +

κ1M
2 [y + log(3/(e− 1))]

n

penid(τ) ≥ −1

3
R(µ̂τ )− κ2

C
pen(τ)− κ2M

2 [y + log(3/(e− 1))]

n
.

Therefore, by Eq. (12), on Ωy, for every τ ∈ Tn,

2

3
R(µ̂τ̂ )−κ1M

2 [y + log(3/(e− 1))]

n
≤ 4

3
R(µ̂τ )+

(
1 +

κ2
C

)
pen(τ)+

κ2M
2 [y + log(3/(e− 1))]

n

hence

2

3
R(µ̂τ̂ ) ≤ 4

3
R(µ̂τ ) +

(
1 +

κ2
C

)
pen(τ) +

(κ1 + κ2)M
2 [y + log(3/(e− 1))]

n

≤ 4

3
R(µ̂τ ) +

(
1 +

κ2 + (κ1 + κ2) log(3/(e− 1))

C

)
pen(τ) + (κ1 + κ2)

M2y

n

since pen(τ) ≥ CM2/n for every τ ∈ Tn. Multiplying both sides by 3/2, we get that if
C ≥ κ1, on Ωy,

R(µ̂τ̂ ) ≤ inf
τ∈Tn

{
2R(µ̂τ ) +

3

2

(
1 +

κ2 + (κ1 + κ2) log(3/(e− 1))

C

)
pen(τ)

}
+

3(κ1 + κ2)

2

M2y

n
.

Let us finally define

L1 := 3
[
κ2 + (κ1 + κ2) log

(
3/(e− 1)

)]
≥ κ1

so that
3

2

(
1 +

κ2 + (κ1 + κ2) log(3/(e− 1))

L1

)
= 2 .

Then, we get that if C ≥ L1, on Ωy,

R(µ̂τ̂ ) ≤ 2 inf
τ∈Tn

{R(µ̂τ ) + pen(τ)}+
3(κ1 + κ2)

2

M2y

n

and the result follows. �

6 Experiments on synthetic data

This section reports the results of some experiments on synthetic data that illustrate the
performance of KCP.
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Figure 1: Examples of generated signals (blue plain curve) in the three scenarios. Red
vertical dashed lines visualize the true change-points locations.

6.1 Data-generation process

Three scenarios are considered: (i) real-valued data with a changing (mean,variance), (ii)
real-valued data with constant mean and variance, and (iii) histogram-valued data as in
Example 4.

In the three scenarios, the sample size is n = 1 000 and the true segmentation τ? is made
of D? = 11 segments, with change-points τ?1 = 100, τ?2 = 130, τ?3 = 220, τ?4 = 320, τ?5 = 370,
τ?6 = 520, τ?7 = 620, τ?8 = 740, τ?9 = 790, τ?10 = 870 (see Figure 1). For each sample, we
choose randomly the distribution of the Xi within each segment of τ? as detailed below;
note that we always make sure that the distribution of Xi does change at each change-point
τ?` .

For each scenario, we generate N = 500 independent samples, from which we estimate
all quantities that are reported in Section 6.3.

Scenario 1: Real-valued data with changing (mean, variance). The distribution of
Xi ∈ R is randomly picked out from: B(10, 0.2) (Binomial), NB(3, 0.7) (Negative-Binomial),
H(10, 5, 2) (Hypergeometric),N (2.5, 0.25) (Gaussian), γ(0.5, 5) (Gamma),W(5, 2) (Weibull)
and Par(1.5, 3) (Pareto). Note that the pair (mean, variance) in each segment changes from
that of its neighbors. Table B.1 summarizes its values.

The distribution within segment ` ∈ {1, . . . , D?} is given by the realization of a random
variable S` ∈ {1, . . . , 7}, each integer representing one of the 7 possible distributions. The
variables S` are generated as follows: S1 is uniformly chosen among {1, . . . , 7}, and for every
` ∈ {1, . . . , D? − 1}, given S`, S`+1 is uniformly chosen among {1, . . . , 7}\{S`}. Figure 1a
shows one sample generated according to this scenario.

Scenario 2: Real-valued data with constant mean and variance. The distribution
of Xi ∈ R is randomly chosen among (1) B(0.5) (Bernoulli), (2) N (0.5, 0.25) (Gaussian)
and (3) E (0.5) (Exponential). These three distributions have a mean 0.5 and a variance
0.25.

The distribution within segment ` ∈ {1, . . . , D?} is given by the realization of a random
variable S` ∈ {1, 2, 3}, similarly to what is done in Scenario 1 (replacing 7 by 3). Figure 1b
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shows one sample generated according to this scenario.

Scenario 3: Histogram-valued data. The observations Xi belong to the d-dimensional
simplex with d = 20 (Example 4), that is, Xi = (a1, . . . , ad) ∈ [0, 1]d with

∑d
j=1 aj = 1. For

each ` ∈ {1, . . . , D?}, we randomly generate d parameter values p`1, . . . , p
`
d independently

with uniform distribution over [0, c3] with c3 = 0.2 . Then, within the `-th segment of τ?,
Xi follows a Dirichlet distribution with parameter (p`1, . . . , p

`
d). Figure 1c displays the first

three coordinates of one sample generated according to this scenario.

6.2 Parameters of KCP

For each sample, we apply our kernel change-point procedure (KCP, that is, Algorithm 1)
with the following choices for its parameters. We always take Dmax = 100.

For the first two scenarios, we consider three kernels:

(i) The linear kernel klin(x, y) = xy.

(ii) The Hermite kernel given by kHσH (x, y) defined in Section 3.2. In Scenario 1, σH = 1.
In Scenario 2, σH = 0.1.

(iii) The Gaussian kernel kGσG defined in Section 3.2. In Scenario 1, σG = 0.1. In Scenario 2,
σG = 0.16.

For Scenario 3, we consider the χ2 kernel kχ
2

0.1(x, y) defined in Section 3.2, and the Gaussian
kernel kGσG with σG = 1.

In each scenario several candidate values have been explored for the bandwidth param-
eters of the above kernels. We have selected the ones with the most representative results.

For choosing the constants c1, c2 arising from Step 2 of KCP, we use the “slope heuris-
tics” method, and more precisely a variant proposed by Lebarbier (2002, Section 4.3.2)
for the calibration of two constants for change-point detection. We first perform a linear
regression of R̂n(τ̂(D)) against 1/n · log

(
n−1
D−1

)
and D/n for D ∈ [0.6×Dmax, Dmax]. Then,

denoting by ŝ1, ŝ2 the coefficients obtained, we define ci = −αŝi for i = 1, 2, with α = 2.
The slope heuristics has been justified theoretically in various settings (for instance by Arlot
and Massart, 2009, for regressograms), and is supported by numerous experiments (Baudry
et al., 2012), including for change-point detection (Lebarbier, 2002, 2005). A partial the-
oretical justification has been obtained recently for change-point detection (Sorba, 2017).
The intuition behind the slope heuristics is that the optimal amount of penalization needed
for avoiding to overfit with τ̂ ∈ argminτ{R̂n(τ) + pen(τ)} is (approximately) proportional
to the minimal penalty:

penoptimal(τ) ≈ α penminimal(τ)

for some constant α > 1, equal to 2 in several settings. The linear regression step described
above corresponds to estimating the minimal penalty:

penminimal(τ) ≈ −ŝ1 ·
1

n
log

(
n− 1

Dτ − 1

)
− ŝ2

Dτ

n
·
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Then, multiplying it by α leads to an estimation of the optimal penalty. In our experiments,
we considered several values of α ∈ [0.8, 2.5]. Remarkably, the performance of the procedure
is not too sensitive to the value of α provided α ∈ [1.7, 2.2]. We only report the results for
α = 2 because it corresponds to the classical advice when using the slope heuristics, and it
is among the best choices for α according to our experiments.

6.3 Results

We now summarize the results of our experiments.

Distance between segmentations. In order to assess the quality of the segmentation τ̂
as an estimator of the true segmentation τ?, we consider two measures of distance between
segmentations. For any τ, τ ′ ∈ Tn, we define the Hausdorff distance between τ and τ ′ by

dH(τ, τ ′) := max

{
max

1≤i≤Dτ−1
min

1≤j≤Dτ ′−1

∣∣τi − τ ′j∣∣, max
1≤j≤Dτ ′−1

min
1≤i≤Dτ−1

∣∣τi − τ ′j∣∣}
and the Frobenius distance between τ and τ ′ (see Lajugie et al., 2014) by

dF (τ, τ ′) :=
∥∥∥M τ −M τ ′

∥∥∥
F

=

√ ∑
1≤i,j≤n

(M τ
i,j −M τ ′

i,j)
2,

where M τ
i,j =

1{i and j belong to the same segment of τ}

Card(segment of τ containing i and j)
.

Note that M τ = Πτ the projection matrix onto Fτ when H = R, that is, for the linear
kernel on X = R. The Hausdorff distance is probably more classical in the change-point lit-
erature, but Figure 2a shows that the Frobenius distance is more informative for comparing
(τ̂(D))D>D? . Indeed, when D is already a bit larger than D?, adding false change-points
makes the segmentation worse without increasing much dH ; on the contrary, d2F readily
takes into account these additional false change-points.

Illustration of KCP. Figure 2 illustrates the typical behaviour of KCP when k is well-
suited to the change-point problem we consider. It summarizes results obtained in Scenario 1
with k = kG the Gaussian kernel.

Figure 2a shows the expected distance between the true segmentation τ? and the seg-
mentations (τ̂(D))1≤D≤Dmax produced at Step 1 of KCP. As expected, the distance is clearly
minimal at D = D?, for both Hausdorff and Frobenius distances. Note that for each indi-
vidual sample, d(τ̂(D), τ?) behaves exactly as the expectation shown on Figure 2a, up to
minor fluctuations. Moreover, the minimal value of the distance is small enough to suggest
that τ̂(D?) is indeed close to τ?. For instance, E[dF (τ̂(D?), τ?)] ≈ 1.71, with a 95% error
bar smaller than 0.11. The closeness between τ̂(D?) and τ? when k = kG can also be
visualized on Figure B.9c in the supplementary material.

As a comparison, when k = klin in the same setting, τ̂(D?) is much further from τ?

since E[dF (τ̂(D?), τ?)] ≈ 10.39 ± 0.24, and a permutation test shows that the difference
is significant, with a p-value smaller than 10−13. See also Figures B.7 and B.9a in the
supplementary material.
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Figure 2: Scenario 1: X = R, variable (mean, variance). Performance of KCP with kernel
kG0.1. The value D? and the localization of the true change-points in τ? are materialized by
vertical red lines.
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Step 2 of KCP is illustrated by Figures 2b and 2c. The expectation of the penalized
criterion is minimal at D = D? (as well as for the risk of µ̂τ̂(D)), and takes significantly
larger values when D 6= D? (Figure 2b). As a result, KCP often selects a number of change-
points D̂−1 close to its true value D?−1 (Figure 2c). Overall, this suggests that the model
selection procedure used at Step 2 of KCP works fairly well.

The overall performance of KCP as a change-point detection procedure is illustrated by
Figure 2d. Each true change-point has a probability larger than 0.5 to be recovered exactly
by τ̂ . If one groups the positions i by blocks of six elements {6j, 6j + 1, . . . , 6j + 5}, j ≥ 1,
the frequency of detection of a change-point by τ̂ in each block containing a true change-
point is between 79 and 89%. Importantly, such figures are obtained without overestimating
much the number of change-points, according to Figure 2c. Figures B.10a and B.10b in the
supplementary material show that more standard change-point detection algorithms —that
is, KCP with k = klin or kH— have a slightly worse performance.

Comparison of three kernels in Scenario 2. Scenario 2 proposes a more challenging
change-point problem with real-valued data: the distribution of the Xi changes while the
mean and the variance remain constant. The performance of KCP with three kernels —klin,
kH and kG— is shown on Figure 3. The linear kernel klin corresponds to the classical least-
squares change-point algorithm (Lebarbier, 2005), which is designed to detect changes in
the mean, hence it should fail in Scenario 2. KCP with the Hermite kernel kH is a natural
“hand-made” extension of this classical approach, since it corresponds to applying the least-
squares change-point algorithm to the feature vectors (Hj,h(Xi))1≤j≤5. By construction, it
should be able to detect changes in the first five moments on the Xi. On the contrary, taking
k = kG the Gaussian kernel fully relies on the versatility of KCP, which makes possible to
consider (virtually) infinite-dimensional feature vectors kG(Xi, ·). Since kG is characteristic,
it should be able to detect any change in the distribution of the Xi.

In order to compare these three kernels within KCP, let us first assume that the number
of change-points is known, hence we can estimate τ? with τ̂(D?), where D∗ is the true
number of segments. Then, Figures 3a, 3b and 3c show that klin, kH and kG behave as
expected: klin seems to put the change-points of τ̂(D?) uniformly at random over {1, . . . , n},
while kH and kG are able to localize the true change-points with a rather large probability
of success. The Gaussian kernel here shows a significantly better detection power, compared
to kH: the frequency of exact detection of the true change-points is between 38 and 47%
with kG, and between 17 and 29% with kH. The same holds when considering blocks of
size 6: kG then detects the change-points with probability 70 to 79%, while kH exhibits
probabilities between 58 and 62%.

Figures 3d, 3e and 3f show that a similar comparison between klin, kH, and kG holds
over the whole set of segmentations (τ̂(D))1≤D≤Dmax provided by Step 1 of KCP. With the
linear kernel (Figure 3d), the Frobenius distance between τ̂(D) and τ? is almost minimal
for D = 1, which suggests that τ̂(D) is not far from random guessing for all D. The shape
of the Hausdorff distance —first decreasing fastly, then almost constant— also supports
this interpretation: A small number of purely random guesses do lead to a fast decrease
of dH ; and for large dimensions, adding a new random guess does not move away τ̂(D)
from τ? if τ̂(D) already contains all the worst possible candidate change-points (which are
the furthest from the true change-points). The Hermite kernel does much better according
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(a) k = klin
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(b) k = kH0.1
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(c) k = kG0.16
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(e) k = kH0.1
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Figure 3: Scenario 2: X = R, constant mean and variance. Performance of KCP with three
different kernels k. The value D? and the localization of the true change-points in τ? are
materialized by vertical red lines. Top: Probability, for each instant i ∈ {1, . . . , n}, that
τ̂(D?) puts a change-point at i. Bottom: Average distance (dF or dH) between τ̂(D) and
τ?, as a function of D.
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to Figure 3e: the Frobenius distance from τ̂(D) to τ? is minimal for D close to D?, and
the minimal expected distance, infD E[dF (τ̂(D), τ?)] ≈ 4.12± 0.6 (with confidence 95%), is
much smaller than when k = klin (in which case infD E[dF (τ̂(D), τ?)] ≈ 10); this difference
is significant (a permutation test yields a p-value smaller than 10−15). Nevertheless, we still
obtain slightly better performance for (τ̂(D))1≤D≤Dmax with k = kG, for which the minimal
distance to τ? is achieved at D = 9, with a minimal expected value equal to 3.83 ± 0.49
(the difference between kH and kG is not statistically significant). The Hausdorff distance
suggests that both kH and kG lead to include false change-points among true ones as long
as D ≤ D?. However, the smaller Frobenius distance achieved by kG at D = 9 (rather than
D = 11 for kH) indicates that the corresponding change-points are closer to the true ones
than those provided by kH (which include more false positives).

When D = D̂ is chosen by KCP, kG clearly leads to the best performance in terms of
recovering the exact change-points compared to klin and kH, as illustrated by Figures B.11a,
B.11b and B.11c in the supplementary material.

Overall, the best performance for KCP in Scenario 2 is clearly obtained with kG, while
klin completely fails and kH yields a decent but suboptimal procedure.

We can notice that other settings can lead to different behaviours. For instance, in
Scenario 1, according to Figure B.10a in the supplementary material, klin can detect fairly
well the true change-points —as expected since the mean (almost) always changes in this
scenario, see Table B.1 in the supplementary material—, but this is at the price of a strong
overestimation of the number of change-points (Figure B.8a). In the same setting, kH

provides fairly good results (Figure B.10b), while kG remains the best choice (Figure 2d).

Since kG is a characteristic kernel, these results suggest that KCP with a characteristic
kernel k might be more versatile than classical least-squares change-point algorithms and
their extensions. A more detailed simulation experiment would nevertheless be needed to
confirm this hypothesis. We also refer to Section 8.2 for a discussion on the choice of k for
a given change-point problem.

Structured data. Figure 4 illustrates the performance of KCP on some histogram-valued
data (Scenario 3). Since a d-dimensional histogram is also an element of Rd, we can analyze
such data either with a kernel taking into account the histogram structure (such as kχ

2
) or

with a usual kernel on Rd (such as klin or kG; here, we consider kG, which seems more reliable
according to our experiments in Scenarios 1 and 2). Assuming that the number of change-
points is known, taking k = kχ

2
yields quite good results according to Figure 4a, at least in

comparison with k = kG (Figure 4b). Similar results hold with a fully data-driven number
of change-points, as shown by Figures B.13a and B.13b in the supplementary material.
Hence, choosing a kernel such as kχ

2
, which takes into account the histogram structure of

the Xi, can improve much the change-point detection performance, compared to taking a
kernel such as kG, which ignores the structure of the Xi.

Let us emphasize that Scenario 3 is quite challenging —changes are hard to distinguish
on Figure 1c—, which has been chosen on purpose. Preliminary experiments have been done
with larger values of c3 —which makes the change-point problem easier, see Section 6.1—,

leading to an almost perfect localization of all change-points by KCP with k = kχ
2

0.1.
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(a) k = kχ
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(b) k = kG1

Figure 4: Scenario 3: histogram-valued data. Performance of KCP with two different kernels
k. Probability, for each instant i ∈ {1, . . . , n}, that τ̂(D?) puts a change-point at i. Vertical
red lines show the true change-points locations.

Comparison to AIC/BIC-type penalty. Figures B.14 and B.15 in the supplementary
material show the results of KCP with a linear penalty —that is, of the form CD/n,
C > 0— in step 2, similarly to AIC (which would correspond to C = σ2) and BIC (for which
C = log(n)σ2/2). Since σ2 is unknown, we use the slope heuristics for choosing C from data,
as explained in Section 6.2. The performance is comparable to the one of KCP, except that
a linear penalty leads to overfitting —by detecting too many change-points (including false
positives)— with a large probability in Scenarios 1 and 2 (compare Figures B.14a and B.8c
for Scenario 1, and Figures B.14b and B.12c for Scenario 2). Therefore, a linear penalty
seems less reliable than the refined shape proposed in the definition of KCP, so we do not
recommend to use a linear penalty in practice.

Comparison to the E-divise procedure (ED). We finally consider the E-divisive pro-
cedure (ED) designed by Matteson and James (2014), focusing on Scenarios 1–2 since this
procedure is made for X = Rd only. We use the e.divisive function from the R-package ecp
described by James and Matteson (2015), with recommended parameters sig.lvl = 0.05
(significance level to test any new change-point), α = 1, and R = 199 permutations. De-
tailed results are shown on Figures B.16, B.17 and B.18 in the supplementary material. In
both scenarios, ED provides much more conservative results —that is, it strongly underes-
timates the number of change-points— compared to KCP with k = kG. This drawback of
ED is particularly clear in Scenario 2 (more difficult) from the comparison of Figures B.12c
and B.16b. As a result, ED’s detection power is much smaller than the one of KCP, with
detection frequencies 2 to 5 times lower for ED in Scenario 2 (see Figures B.11c and B.17b).
The performance of ED improves when D? is given to the algorithm, but KCP remains
significantly better than ED in terms of detection power (see Figures 3c and B.18b, for
instance). Overall, KCP with k = kG clearly outperforms ED in Scenarios 1–2, which can
be explained by at least two reasons: (i) ED uses a different similarity measures than ours;
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(ii) ED relies on a greedy strategy, in which τ̂(D + 1) is obtained from τ̂(D) by adding
one change-point, so that any mistake at the beginning of the process impacts the final
segmentation.

7 Real-data experiment

7.1 Data description

In this section, we illustrate the behavior of KCP on a publicly available dataset corre-
sponding to wave heights hourly-measured between January 2005 and September 2012 at a
location in Northern Atlantic (Killick et al., 2012, Section 4.2). This leads to a large sample
of length n = 63 651.

This dataset exhibits a strong difference between the wave heights during winters (high
level) and summers (low level) (Figure 5a). Plotting the first-difference based signal fol-
lowing Killick et al. (2012, Figure 4) highlights strong changes in the variance of the signal
(Figure 5b). Automatically detecting the change-points between such successive periods is
of primary interest for analyzing the environmental conditions of offshore wind farms for
instance.
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Figure 5: Wave-heights time-series collected between January 2005 and September 2012.

7.2 Procedures compared

KCP We apply KCP (Algorithm 1) on the original data (Figure 5a) with the Gaussian
kernel and bandwidth parameter equal to the empirical standard deviation of the data
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σG = 1.3526 —we here take the same data-driven bandwidth choice as Celisse et al. (2018).
The maximum number of segments is set to Dmax = 50, which seems to be large enough
since about 14 changes only are expected along this period of almost 7 years. The numerical
constants c1, c2 ≥ 0 are estimated by using the slope heuristics as detailed in Section 6.2.

ED The E-divisive procedure (ED) from Matteson and James (2014) (see Section 6.3) is
applied on the original data (Figure 5a) with its default parameter values: sig.lvl = 0.05,
α = 1, and R = 199 permutations.

PELT The so-called PELT procedure (Killick et al., 2012) is considered by means of the
function cpt.var implemented in the R package changepoint (Killick and Eckley, 2014).
It is applied to the first-difference based signal (Figure 5b) as done by Killick et al. (2012),
because this procedure is built for detecting changes in the variance of a zero-mean Gaussian
signal.

7.3 Results

Figure 6 displays the estimated change-points (red vertical dashed lines) output by KCP
(Figure 6a) and PELT (Figure 6b). The segmentation output by ED only contains one seg-
ment (no change-point), which is consistent with the trend of ED towards underestimating
the number of changes.

KCP outputs 16 homogeneous segments which do not coincide with changes of the mean
as one could have feared. PELT outputs 17 segments which are mainly similar to the ones
of KCP. Both results are realistic, as explained by Killick et al. (2012).

Nevertheless there are a few differences around the year 2007 where PELT detects very
narrow segments, which are likely related to outliers. It still arises that the fourth change-
point location estimated by KCP is somewhat questionable, compared to the one output
by PELT, since it coincides with a strong change in the variance which seems, by eye, to
have started a bit sooner.

A striking feature of KCP remains that no a priori specification has been made about
the type of changes we are looking for. This strongly contrasts with the PELT procedure,
which makes a Gaussian assumption and relies on the prior knowledge that changes occur
in the variance of the signal only (in this example).

The overall conclusion is that KCP here provides reliable results without requiring any
side information about the data distribution and the nature of its changes. This turns out
to be a strong asset when analyzing real data, for which any distributional assumption is
misleading when it happens to be violated.

8 Conclusion

This paper describes a kernel change-point algorithm (KCP, that is, Algorithm 1), based
upon a penalization procedure generalizing the one of Comte and Rozenholc (2004) and
Lebarbier (2005) to RKHS-valued data. Such an extension significantly broadens the range
of possible applications of the algorithm, since it can deal with complex or structured
data, and it can detect changes in the full distribution of the data —not only the mean or
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Figure 6: Segmentations of the wave-heights time-series output by KCP and PELT, respec-
tively.

the variance. The new theoretical tools developed in the paper —mostly, a concentration
inequality for some function of RKHS-valued random variables (Proposition 1)— could be
useful in other settings, such as clustering in reproducing kernel Hilbert spaces or functional
data analysis. Let us now end the paper with three questions about KCP: one that has
been solved while this paper was in revision, and two that are still open.

8.1 Identification of the change-point locations

A natural question for a change-point algorithm is its consistency for estimating the true
change-point locations τ?. More precisely, let us assume that some τ? ∈ Tn exists such that

PXτ?
`−1

+1
= · · · = PXτ?

`
for 1 ≤ ` ≤ Dτ? , PXτ?

`
6= PXτ?

`
+1

for 1 ≤ ` ≤ Dτ? − 1

and Dτ? is fixed as n tends to infinity (even if τ? necessarily depends on n). The goal is
to prove that d(τ̂ , τ?) tends to zero almost surely as n tends to infinity, where d is some
distance on Tn, for instance n−1dF or n−1dH as defined in Section 6.3. Many papers prove
such a consistency result for other change-point algorithms in various settings (for instance,
Yao, 1988; Lavielle and Moulines, 2000; Frick et al., 2014; Matteson and James, 2014).
Answering this question for KCP is beyond the scope of the paper. It has been proved by
Garreau and Arlot (2018), after the first version of this work appeared as a preprint, that
KCP is indeed consistent under mild assumptions.
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8.2 Choosing the kernel k

A major practical and theoretical question about KCP is the choice of the kernel k. Fully
answering this question is beyond the scope of the paper, but we can already provide a few
guidelines, based upon the theoretical and experimental results that we already have, and
review some previous works tackling a related question.

First, simulation experiments in Section 6 show that the performance can strongly vary
with k. They suggest that using a characteristic kernel —such as the Gaussian kernel kG—
yields a more versatile procedure when the goal is to detect changes in the full distribution of
the data. Nevertheless, for a given change-point problem, all characteristic kernels certainly
are not equivalent. For instance, unshown experimental results suggest that kGh with a
clearly bad choice of the bandwidth h —say, smaller than 10−4 or larger than 104 in settings
similar to Scenario 1— leads to a poor performance of KCP, despite the fact that kGh is
characteristic for any h > 0.

Furthermore, for a given setting, a non characteristic kernel can be a good choice: when
the goal is to detect changes in the mean of Xi ∈ Rd, klin is known to work very well
(Lebarbier, 2005). Cabrieto et al. (2018b,a) also show that KCP can be used for focusing
on changes in the correlation (resp. autocorrelation) structure of multivariate time series.

Second, our theoretical interpretation of KCP in Section 4.2 suggests how the perfor-
mance of KCP depends on k, hence on which basis k should be chosen. Indeed, KCP focuses
on changes in the mean µ?1, . . . , µ

?
n of the time series Y1, . . . , Yn ∈ H. A change between PXi

and PXi+1 should be detected more easily when

‖µ?i+1 − µ?i ‖2H = E
[
k(Xi+1, Xi+1)

]
− 2E

[
k(Xi+1, Xi)

]
+ E

[
k(Xi, Xi)

]
is larger, compared to the “noise level” max{vi, vi+1}. When PXi 6= PXi+1 , we know that
‖µ?i+1−µ?i ‖H is positive for any characteristic kernel k, while it might be equal to zero when
k is not characteristic. But the fact that k is characteristic or not is not sufficient to guess
whether k will work well or not, according to the above heuristic.

The problem of choosing a kernel has been considered for many different tasks in the
machine learning literature. Let us only mention here some references that are tackling
this question in a framework close to change-point detection: choosing the best kernel for
a two-sample or an homogeneity test.

For choosing the bandwidth h of a Gaussian kernel, a classical heuristic —called the
median heuristic— is to take h equal to some median of (‖Xi −Xj‖)i<j , see Gretton et al.
(2012a, Section 8, and references therein) and Garreau et al. (2018).

A procedure for choosing the best convex combination of a finite number of kernels has
been proposed by Gretton et al. (2012b), with the goal of building a powerful two-sample
test. Another idea for combining several kernels, for instance the family {kGh : h > 0},
has been studied by Sriperumbudur et al. (2009) for homogeneity and independence tests.
Roughly, the idea is to replace the MMD test statistics —which depends on a kernel k—
by its supremum over the considered family of kernels. Nevertheless, the extension of these
two ideas to change-point detection with KCP does not seem straightforward.

Let us now discuss the choice of the bandwidth of a Gaussian kernel for KCP. If n
is large, the median heuristic can require a large computation time. When Xi ∈ R, the
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empirical standard deviation of {X1, . . . , Xn} is a good proxy to it, easy to compute on
large datasets. It has been used successfully with KCP by Celisse et al. (2018), which is the
reason why we use it in Section 7.

Nevertheless, using the median heuristic (or a proxy) with KCP may be questionable in
general, since two-sample test and multiple change-point detection are different tasks. For
instance, when the mean of the Xi ∈ R has large jumps, the median-heuristic bandwidth
can be much larger than the standard deviation of the Xi, so that it may not work as well.
In such cases, another option to consider would be some median of (‖Xi+1 −Xi‖)1≤i≤n−1,
which could be studied in future works on KCP.

8.3 Heteroscedasticity of data in H

A possible drawback of KCP is that it does not take into account the fact that the variance
vi of Yi = Φ(Xi) can change with i: in general, the Yi are heteroscedastic. In the case
of real-valued data and the linear kernel klin, Arlot and Celisse (2011) have shown that
heteroscedastic data can make KCP fail, and that this failure cannot be fixed by changing
the penalty used at Step 2: all the segmentations τ̂(D) produced at Step 1 can be wrong.

We conjecture that, for the Gaussian kernel kGh at least, when the bandwidth h is well
chosen, the variances of the Yi stay within a reasonably small range of values for most
non-degenerate distributions. Indeed, according to Eq. (8),

vi = 1− E
[
exp

(
−‖Xi −X ′i‖2H

2h2

)]
∈ [0, 1]

where X ′i is an independent copy of Xi. If Xi is not deterministic and if h is smaller than
the typical order of magnitude of ‖Xi − X ′i‖H, then, vi cannot be much smaller than its
maximal value 1. The median heuristic and our simulation experiments suggest that “good”
values of h for change-point detection are small enough, but this remains to be proved.

When heteroscedasticity is a problem for KCP, which probably occurs for some kernels
beyond klin, we can think of combining KCP with the ideas of Arlot and Celisse (2011),
that is, replacing the empirical risk and the penalized criterion in Steps 1 and 2 of KCP by
cross-validation estimators of the risk R(µ̂τ ).

Acknowledgments

The authors thank Damien Garreau for some discussions that lead to an improvement of
the theoretical results —namely, Proposition 1 and Theorem 2, which were stated with the
additional assumption that mini vi ≥ cM2 > 0 in a previous version of this paper (Arlot
et al., 2012).
This work was mostly done while Sylvain Arlot was financed by CNRS and member of the
Sierra team in the Departement d’Informatique de l’Ecole normale superieure (CNRS/ENS/INRIA
UMR 8548), 45 rue d’Ulm, F-75230 Paris Cedex 05, France, and Zaid Harchaoui was a
member of the LEAR team of Inria. Sylvain Arlot and Alain Celisse were also supported
by Institut des Hautes Études Scientifiques (IHES, Le Bois-Marie, 35, route de Chartres,
91440 Bures-Sur-Yvette, France) at the end of the writing of this paper. Sylvain Arlot is
also member of the Select project-team of Inria Saclay.

33



The authors acknowledge the support of the French Agence Nationale de la Recherche
(ANR) under reference ANR-09-JCJC-0027-01 (Detect project) and ANR-14-CE23-0003-
01 (Macaron project), the GARGANTUA project funded by the Mastodons program of
CNRS, the LabEx Persyval-Lab (ANR-11-LABX-0025), the BeFast project funded by the
PEPS Fascido program of CNRS, and the Moore-Sloan Data Science Environment at NYU.

A Additional proofs

A.1 Proofs of Section 4.1

A.1.1 Proof of Eq. (5)

Let f ∈ Fτ and g ∈ Hn. For any ` ∈ J1, Dτ K, we define Iτ` := Jτ`−1 + 1, τ`K the `-th interval
of τ , fIτ` the common value of (fi)i∈Iτ` and

gIτ`
:=

1

Card(Iτ` )

∑
i∈Iτ`

gi =
1

τ` − τ`−1

∑
i∈Iτ`

gi . (A.29)

Then,

‖f − g‖2 =

Dτ∑
`=1

∑
i∈Iτ`

[∥∥∥fIτ` − gIτ` ∥∥∥2H +
∥∥∥gi − gIτ` ∥∥∥2H + 2

〈
fIτ` − gIτ` , gIτ` − gi

〉
H

]

=

Dτ∑
`=1

[
(τ` − τ`−1)

∥∥∥fIτ` − gIτ` ∥∥∥2H
]

+

Dτ∑
`=1

∑
i∈Iτ`

∥∥∥gi − gIτ` ∥∥∥2H .

since
∑

i∈Iτ`
(gIτ`
− gi) = 0. So, ‖f − g‖2 is minimal over f ∈ Fτ if and only if fIτ` = gIτ`

for

every ` ∈ J1, Dτ K. �

A.1.2 Proof of Eq. (6)

We use the notations introduced in the proof of Eq. (5). Then,

‖Y − µ̂τ‖2 =

Dτ∑
`=1

∑
i∈Iτ`

‖Yi − Y Iτ`
‖2H =

Dτ∑
`=1

∑
i∈Iτ`

(
‖Yi‖2H − ‖Y Iτ`

‖2H
)

where we used Eq. (5) for the first equality, and that

∑
i∈Iτ`

〈
Yi, Y Iτ`

〉
H = Card(Iτ` )

∥∥Y Iτ`

∥∥2
H
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for the second equality. Therefore,

‖Y − µ̂τ‖2 =
n∑
i=1

‖Yi‖2H −
Dτ∑
`=1

1

τ` − τ`−1

∥∥∥∥∥∑
i∈Iτ`

Yi

∥∥∥∥∥
2

H

=
n∑
i=1

‖Yi‖2H −
Dτ∑
`=1

1

τ` − τ`−1

∑
i,j∈Iτ`

〈Yi, Yj〉H

=
n∑
i=1

k(Xi, Xi)−
Dτ∑
`=1

1

τ` − τ`−1

∑
i,j∈Iτ`

k(Xi, Xj) ,

which proves Eq. (6). �

A.2 Concentration of the linear term: proof of Proposition 3

Let us define µ?τ = Πτµ
? and

Sτ = 〈µ? − µ?τ , ε〉 =
n∑
i=1

Zi with Zi =
〈
(µ? − µ?τ )i, εi

〉
H ,

The Zis are independent and centered, so Eq. (A.31)–(A.32) in Lemma A.5 below (which
requires assumption (Db)) show that the conditions of Bernstein’s inequality are satisfied
(see Proposition B.6). Therefore for every x ≥ 0, with probability at least 1− 2e−x,∣∣∣∣∣

n∑
i=1

Zi

∣∣∣∣∣ ≤
√

2vmax ‖µ? − µ?τ‖
2 x+

4M2x

3

≤ θ ‖µ? − µ?τ‖
2 +

(
vmax

2θ
+

4M2

3

)
x

for every θ > 0, using 2ab ≤ θa2 + θ−1b2. �
A key argument in the proof is the following lemma.

Lemma A.5 For every m ∈ Mn, if (Db) holds true, the following holds true with proba-
bility one:

∀i ∈ {1, . . . , n} , ‖µ?i ‖H ≤M , ‖εi‖H ≤ 2M (A.30)

and ‖(µ? − µ?τ )i‖H ≤ 2M so that |Zi| ≤ 4M2 . (A.31)

In addition,

n∑
i=1

Var (Zi) ≤ vmax ‖µ? − µ?τ‖
2 . (A.32)

Proof [of Lemma A.5] First, remark that for every i,

vi = E
[
‖εi‖2

]
= E

[
k(Xi, Xi)

]
− ‖µ?i ‖2H ≥ 0 ,

so that with (Db),
‖µ?i ‖2H ≤ E

[
k(Xi, Xi)

]
≤M2 ,
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which proves the first bound in Eq. (A.30). As a consequence, by the triangular inequality,

‖εi‖H ≤ ‖Yi‖H + ‖µ?i ‖H ≤ 2M ,

that is, the second inequality in Eq. (A.30) holds true.

Let us now define for every i ∈ {1, . . . , n}, the integer K(i) ∈ {1, . . . , Dτ} such that
IτK(i) =

q
τK(i)−1 + 1, τK(i)

y
is the unique interval of the segmentation τ such that i ∈ IτK(i).

Then,

(µ? − µ?τ )i =
1

τK(i) − τK(i)−1

∑
j∈Iτ

K(i)

(µ?i − µ?j ),

so that the triangular inequality and Eq. (A.30) imply

‖(µ? − µ?τ )i‖H ≤ sup
j∈Iτ

K(i)

∥∥µ?i − µ?j∥∥H ≤ sup
1≤j,k≤n

∥∥µ?k − µ?j∥∥H ≤ 2 sup
1≤j≤n

∥∥µ?j∥∥H ≤ 2M ,

that is, the first part of Eq. (A.31) holds true. The second part of Eq. (A.31) directly follows
from Cauchy-Schwarz’s inequality. For proving Eq. (A.32), we remark that

E
[
Z2
i

]
= E

[〈
(µ? − µ?τ )i, εi

〉2
H

]
≤ ‖(µ? − µ?τ )i‖2H E

[
‖εi‖2H

]
by Cauchy-Schwarz’s inequality

= ‖(µ? − µ?τ )i‖2H vi ≤ ‖(µ
? − µ?τ )i‖2H vmax ,

so that

n∑
i=1

Var (Zi) ≤ vmax ‖µ? − µ?τ‖
2 .
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Magalie Fromont, Béatrice Laurent, Matthieu Lerasle, and Patricia Reynaud-Bouret. Ker-
nels based tests with non-asymptotic bootstrap approaches for two-sample problems. In
JMLR W& CP (COLT 2012), volume 23, pages 23.1–23.23, 2012.

Piotr Fryzlewicz. Wild binary segmentation for multiple change-point detection. The Annals
of Statistics, 42(6):2243–2281, 2014.

Piotr Fryzlewicz and Suhasini Subba Rao. Multiple-change-point detection for auto-
regressive conditional heteroscedastic processes. Journal of the Royal Statistical Society:
series B (statistical methodology), 76(5):903–924, 2014.

Kenji Fukumizu, Francis R. Bach, and Michael I. Jordan. Dimensionality reduction for
supervised learning with reproducing kernel hilbert spaces. Journal of Machine Learning
Research, 5:73–99, 2004a.

Kenji Fukumizu, Francis R. Bach, and Michael I. Jordan. Kernel dimensionality reduction
for supervised learning. In Advances in Neural Information Processing Systems 16, pages
81–88. MIT Press, 2004b.

Kenji Fukumizu, Arthur Gretton, Xiaohai Sun, and Bernhard Schölkopf. Kernel measures
of conditional dependence. In Advances in Neural Information Processing Systems 20,
pages 489–496. Curran Associates, Inc., 2008.

Damien Garreau and Sylvain Arlot. Consistent change-point detection with ker-
nels. Electron. J. Statist., 12(2):4440–4486, 2018. Preliminary versions available at
arXiv:1612.04740.

Damien Garreau, Wittawat Jitkrittum, and Motonobu Kanagawa. Large sample analysis
of the median heuristic, 2018. arXiv:1707.07269.
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Youngser Park, Heng Wang, Tobias Nöbauer, Alipasha Vaziri, and Carey E Priebe. Anomaly
detection on whole-brain functional imaging of neuronal activity using graph scan statis-
tics. Neuron, 2(3,000):4–000, 2015.

Mattis Paulin, Julien Mairal, Matthijs Douze, Zäıd Harchaoui, Florent Perronnin, and
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B Supplementary material

B.1 Classical concentration inequalities

This section collects a few results that are used throughout the paper.

B.1.1 Bernstein’s inequality

Proposition B.6 (Bernstein’s inequality, as stated by Massart 2007, Proposition 2.9)
Let X1, . . . , Xn be independent real-valued random variables. Assume that some positive
constants v and c exist such that, for every k ≥ 2

n∑
i=1

E
[
|Xi|k

]
≤ k!

2
vck−2 . (B.33)

Then, for every x > 0,

P

(
n∑
i=1

(
Xi − E[Xi]

)
>
√

2vx+ cx

)
≤ e−x .

In particular, if for every i ∈ {1, . . . , n}, |Xi| ≤ 3c almost surely, Eq. (B.33) holds true with
v =

∑n
i=1 Var(Xi).

B.1.2 Pinelis-Sakhanenko’s inequality

Proposition B.7 (Pinelis and Sakhanenko (1986), Corollary 1) Let X1, . . . , Xn be
independent random variables with values in some Hilbert space H. Assume the Xi are
centered and that constants σ2, c > 0 exist such that for every p ≥ 2,

n∑
i=1

E
[
‖Xi‖pH

]
≤ p!

2
σ2cp−2 ,

Then, for every x > 0,

P

[∥∥∥∥∥
n∑
i=1

Xi

∥∥∥∥∥
H

> x

]
≤ 2 exp

[
− x2

2 (σ2 + cx)

]
.

B.1.3 Talagrand’s inequality

The following proposition is a refined version of Talagrand’s concentration inequality (Ta-
lagrand, 1996), as it is stated by Boucheron et al. (2013, Corollary 12.12).

Proposition B.8 (Corollary 12.12 of Boucheron et al. (2013)) Let X1, . . . , Xn be in-
dependent vector-valued random variables and let

Z = sup
f∈F

n∑
i=1

Xi,f .
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Assume that for all i ∈ {1, . . . , n} and f ∈ F , E[Xi,f ] = 0 and |Xi,f | ≤ 1. Define

σ2 = sup
f∈F

n∑
i=1

E
[
X2
i,f

]
and v = 2E[Z] + σ2 .

Then, for all x ≥ 0,

P
(
Z ≥ E[Z] +

√
2vx+

x

3

)
≤ e−x (B.34)

P
(
Z ≤ E[Z]−

√
2vx− x

8

)
≤ e−x . (B.35)

B.2 Proof of Proposition 4

The first step is to write ‖Πτε‖ of the form of Z in Proposition B.8 for some well-chosen
(Xi,f )1≤i≤n, f∈Gτ . With for every 1 ≤ K ≤ Dτ , fK = 1/(τK − τK−1)

∑τK
i=τK−1+1 fi, it comes

‖Πτε‖ = sup
f∈Hn, ‖f‖≤1

∣∣〈f, Πτε〉
∣∣

= sup
f∈Hn, ‖f‖≤1

∣∣〈Πτf, ε〉
∣∣

= sup
f∈Hn,

∑Dτ
K=1(τK−τK−1)‖fK‖2≤1

∣∣∣∣∣∣
Dτ∑
K=1

τK∑
i=τK−1+1

〈
fK , εi

〉
H

∣∣∣∣∣∣
= sup

f∈Gτ

n∑
i=1

Xi,f

where Gτ is some countable dense subset of{
f ∈ Hn,

Dτ∑
K=1

(τK − τK−1)
∥∥fK∥∥2H ≤ 1

}

(such a set Gτ exists since H is separable), and for every i ∈ {1, . . . , n} and f ∈ Gτ ,

Xi,f =
〈
fK(i), εi

〉
H

where we recall that K(i) is defined in the proof of Lemma A.5.

Let us now check that the assumptions of Proposition B.8 are satisfied: (X1,f )f∈Gτ , . . . , (Xn,f )f∈Gτ
are independent since ε1, . . . , εn are assumed independent. For every i ∈ {1, . . . , n} and
f ∈ Gτ ,

E
[
Xi,f

]
= E

[〈
fK(i), εi

〉
H

]
= 0

since fK(i) ∈ H is deterministic, and for every f ∈ Gτ ,

∣∣Xi,f

∣∣ =
∣∣∣〈fK(i), εi

〉
H

∣∣∣ ≤ ∥∥∥fK(i)

∥∥∥
H
‖εi‖H ≤

2M√
τK(i) − τK(i)−1

≤ 2M

46



by Cauchy-Schwarz’s inequality, assumption (Db) and Lemma A.5. So, we can apply
Proposition B.8 to

Z =
1

2M
‖Πτε‖ = sup

f∈Gτ

n∑
i=1

Xi,f

where Xi,f := (2M)−1Xi,f .
Before writing the resulting concentration inequality, let us first compute (and bound)

the quantity denoted by σ2 in the statement of Proposition B.8. For every f ∈ Gτ ,

4M2
n∑
i=1

E
[
X2
i,f

]
=

n∑
i=1

E
[〈
fK(i), εi

〉2
H

]
≤

n∑
i=1

[∥∥∥fK(i)

∥∥∥2
H
E
[
‖εi‖2H

]]

=

Dτ∑
K=1

∥∥fK∥∥2H τK∑
i=τK−1+1

vi


=

Dτ∑
K=1

[
(τK − τK−1)

∥∥fK∥∥2H vτK]
by Cauchy-Schwarz’s inequality. So, by definition of Gτ and σ2,

σ2 ≤ 1

4M2
max

1≤K≤Dτ
vτK .

We can now write what Proposition B.8 proves about the concentration of ‖Πτε‖: for
every x ≥ 0, with probability at least 1− e−x,

‖Πτε‖ − E
[
‖Πτε‖

]
≤ 2M

√
2vx+

2Mx

3
≤

√
2x

(
4ME

[
‖Πτε‖

]
+ max

1≤K≤Dτ
vτK

)
+

2Mx

3
,

and similarly, with probability at least 1− e−x,

‖Πτε‖ − E
[
‖Πτε‖

]
≥ −

√
2x

(
4ME

[
‖Πτε‖

]
+ max

1≤K≤Dτ
vτK

)
− Mx

4
.

So, using a union bound, we have just proved Eq. (22). �

B.3 Second method for choosing c1, c2 in KCP

We describe an alternative to the slope heuristics for choosing c1, c2 in KCP.
When prior information guarantee that the “variance” is almost constant and that no

change occurs in some parts of the observed time series —say, at the start and at the end—,
we can estimate this “variance” within each of these parts and take c1 = c2 equal to

ĉvar := 2 max
(
v̂s, v̂e

)
, (B.36)

where

v̂s :=
1

|Is| − 1

∑
i∈Is

k(Xi, Xi) +
1

|Is|2
∑
j,`∈Is

k(Xj , X`)−
2

|Is|
∑
j∈Is

k(Xi, Xj)
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denotes the empirical variance of the start (Xi)i∈Is of the time series, and v̂e is defined
similarly from the end (Xi)i∈Ie of the time series. The fact that an estimate of the variance
multiplied by 2 is a good choice for c1 = c2 is justified by the numerical experiments made
by Lebarbier (2005) in the case of the linear kernel and one-dimensional data. This strategy
was used successfully in the real-data experiments of an earlier version of the present paper
(Arlot et al., 2012, Section 6.2).
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Distribution Mean Variance

B(10, 0.2) 2 1.6
NB (3, 0.7) 9/7 ≈ 1.29 90/49 ≈ 1.84
H(10, 5, 2) 1 4/9 ≈ 0.44
N (2.5, 0.25) 2.5 0.25
γ (0.5, 5) 2.5 12.5

W(5, 2) 5
√
π

2 ≈ 4.43 25(1− π
4 ) ≈ 5.37

Par(1.5, 3) 9/4 = 2.25 27/16 ≈ 1.69

Table B.1: Scenario 1, mean and variance for the seven distributions considered.

B.4 Additional details about the synthetic experiments

Data generation process

Table B.1 provides the values of the mean and variance of the seven distribution considered
in Scenario 1. It shows that the pair (mean, variance) changes at every change-point in
Scenario 1, but the mean sometimes stays constant.

Further results on synthetic data

This section gathers some additional results concerning the experiments of Section 6.
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Figure B.7: Scenario 1: X = R, variable (mean, variance). Performance of KCP with
kernel klin. Average distance (dF or dH) between τ̂(D) and τ?, as a function of D.

5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Dimension

F
re

q
u

e
n

c
y
 o

f 
s
e

le
c
ti
o

n

(a) k = klin

4 5 6 7 8 9 10 11 12 13 14 15
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Dimension

F
re

q
u

e
n

c
y
 o

f 
s
e

le
c
ti
o

n

(b) k = kH1
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Figure B.8: Scenario 1: X = R, variable (mean, variance). KCP with three different kernels
k. Distribution of D̂. (Figure B.8c is a copy of Figure 2c, that we repeat here for making
comparisons easier.)
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Figure B.9: Scenario 1: X = R, variable (mean, variance). Performance of KCP with three
different kernels. Probability, for each instant i ∈ {1, . . . , n}, that τ̂(D?) puts a change-point
at i.
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Figure B.10: Scenario 1: X = R, variable (mean, variance). Performance of KCP with
three different kernels. Probability, for each instant i ∈ {1, . . . , n}, that τ̂ = τ̂(D̂) puts a
change-point at i.
For k = klin, notice the high ‘baseline’ level of (wrong) detection of change-points, which is
due to a frequent overestimation of the number of change-points, see Figure B.8a.
(Figure B.10c is a copy of Figure 2d, that we repeat here for making comparisons easier.)
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(a) k = klin
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(b) k = kH0.1
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Figure B.11: Scenario 2: X = R, constant mean and variance. Performance of KCP with
three different kernels k. Probability, for each instant i ∈ {1, . . . , n}, that τ̂ = τ̂(D̂) puts a
change-point at i.
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(a) k = klin
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(b) k = kH0.1
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(c) k = kG0.16

Figure B.12: Scenario 2: X = R, constant mean and variance. KCP with three different
kernels k. Distribution of D̂.
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Figure B.13: Scenario 3: histogram-valued data. Performance of KCP with two different
kernels. Probability, for each instant i ∈ {1, . . . , n}, that τ̂ = τ̂(D̂) puts a change-point at
i.
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(a) Scenario 1, k = kG0.1
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(b) Scenario 2, k = kG0.16
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(c) Scenario 3, k = kχ
2

0.1

Figure B.14: KCP with a linear penalty (see Section 6.3): distribution of D̂.
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(a) Scenario 1, k = kG0.1

100 200 300 400 500 600 700 800 900 1000

0

0.1

0.2

0.3

0.4

0.5

0.6

Position

F
re

q
. 
o
f 
s
e
le

c
te

d
 c

h
g
p
ts

(b) Scenario 2, k = kG0.16
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Figure B.15: KCP with a linear penalty (see Section 6.3): Probability, for each instant
i ∈ {1, . . . , n}, that τ̂ = τ̂(D̂) puts a change-point at i.
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(a) Scenario 1
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(b) Scenario 2

Figure B.16: E-divisive procedure (ED, see Section 6.3) with type-I error level sig.lvl =
0.05, α = 1, and R = 199: Distribution of D̂, the number of segments selected.
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(a) Scenario 1
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Figure B.17: E-divisive procedure (ED, see Section 6.3) with type-I error level sig.lvl =
0.05, α = 1, and R = 199: Probability, for each instant i ∈ {1, . . . , n}, that τ̂ED puts a
change-point at i.
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(a) Scenario 1
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Figure B.18: E-divisive procedure (ED, see Section 6.3) with α = 1 and D = D? = 11
known: Probability, for each instant i ∈ {1, . . . , n}, that τ̂ED(D?) puts a change-point at i.
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