Non-rigid 3D shape classification using Bag-of-Feature techniques - Archive ouverte HAL
Communication Dans Un Congrès Année : 2011

Non-rigid 3D shape classification using Bag-of-Feature techniques

Olivier Colot
Mohamed Daoudi

Résumé

In this paper, we present a new method for 3D-shape categorization using Bag-of-Feature techniques (BoF). This method is based on vector quantization of invariant descriptors of 3D-object patches. We analyze the performance of two well-known classifiers: the Naïve Bayes and the SVM. The results show the effectiveness of our approach and prove that the method is robust to non-rigid and deformable shapes, in which the class of transformations may be very wide due to the capability of such shapes to bend and assume different forms.
Fichier principal
Vignette du fichier
tabiaICME2011.pdf (1.09 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00666732 , version 1 (06-02-2012)

Identifiants

  • HAL Id : hal-00666732 , version 1

Citer

Hedi Tabia, Olivier Colot, Mohamed Daoudi, Jean-Philippe Vandeborre. Non-rigid 3D shape classification using Bag-of-Feature techniques. IEEE International Conference on Multimedia and Expo (ICME), Jul 2011, Barcelona, Spain. pp.475. ⟨hal-00666732⟩
237 Consultations
349 Téléchargements

Partager

More